740
Views
21
CrossRef citations to date
0
Altmetric
Supplement

Understanding and Optimizing Bone Health in Breast Cancer

, &
Pages 3-20 | Accepted 15 Oct 2010, Published online: 05 Nov 2010
 

Abstract

Bone is the preferred site of metastasis for breast cancer, and presence of skeletal lesions is associated with significant morbidity and poor prognosis. Skeletal-related effects such as pain, pathologic fractures, spinal compression, and hypercalcemia are frequent consequences of skeletal lesions of breast cancer that have debilitating effects on the patients’ quality of life. In addition to direct cancer effects on the skeleton, therapies commonly used to treat patients with breast cancer such as chemotherapy and aromatase inhibitors (AI) result in cancer therapy-induced bone loss (CTIBL) which is associated with increased risk of skeletal complications such as fractures. Bisphosphonates are a class of antiresorptive drugs that are now firmly established as the cornerstone of the management of skeletal-related events due to breast cancer. Other novel bone-targeting agents such as the anti-receptor activator of NF-κB ligand (RANKL) monoclonal antibody denosumab are also showing promising activity in the treatment of bone metastasis secondary to breast cancer. Moreover, recent provocative evidence suggests that bisphosphonates might also exhibit antitumor activity via direct and indirect mechanisms. The goal of this review is to summarize the pathophysiology of osteolytic bone lesions secondary to breast cancer, provide clinical evidence of currently available bone-targeted drugs in the treatment of bone metastasis and CTIBL, and explore the antitumor activity of current bone-targeted agents in patients with breast cancer.

Acknowledgment

The authors thank Nathan J. Kelly, PhD, for his assistance in writing the manuscript and Lisa Doelling Carlson for her editorial assistance in preparing this manuscript for publication. These individuals were compensated by prIME Oncology for their services.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.