127
Views
19
CrossRef citations to date
0
Altmetric
Primary Article

Length Bias in the Measurements of Carbon Nanotubes

Pages 462-467 | Received 01 Aug 2007, Published online: 01 Jan 2012
 

Abstract

To measure carbon nanotube lengths, atomic force microscopy and special software are used to identify and measure nanotubes on a square grid. Current practice does not include nanotubes that cross the grid, and, as a result, the sample is length-biased. The selection bias model can be demonstrated through Buffon’s needle problem, extended to general curves that more realistically represent the shape of nanotubes observed on a grid. In this article, the nonparametric maximum likelihood estimator is constructed for the length distribution of the nanotubes, and the consequences of the length bias are examined. Probability plots reveal that the corrected length distribution estimate provides a better fit to the Weibull distribution than the original selection-biased observations, thus reinforcing a previous claim about the underlying distribution of synthesized nanotube lengths.

View correction statement:
Corrigendum

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.