402
Views
46
CrossRef citations to date
0
Altmetric
Articles

Statistical Emulation of Large Linear Dynamic Models

&
Pages 29-43 | Received 01 Oct 2007, Published online: 01 Jan 2012
 

Abstract

The article describes a new methodology for the emulation of high-order, dynamic simulation models. This exploits the technique of dominant mode analysis to identify a reduced-order, linear transfer function model that closely reproduces the linearized dynamic behavior of the large model. Based on a set of such reduced-order models, identified over a specified region of the large model’s parameter space, nonparametric regression, tensor product cubic spline smoothing, or Gaussian process emulation are used to construct a computationally efficient, low-order, dynamic emulation (or meta) model that can replace the large model in applications such as sensitivity analysis, forecasting, or control system design. Two modes of emulation are possible, one of which allows for novel ‘stand-alone’ operation that replicates the dynamic behavior of the large simulation model over any time horizon and any sequence of the forcing inputs. Two examples demonstrate the practical utility of the proposed technique and supplementary materials, available online and including Matlab code, provide a background to the methods of transfer function model identification and estimation used in the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.