520
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Ethanol Production from Xylose by a Recombinant Candida utilis Strain Expressing Protein-Engineered Xylose Reductase and Xylitol Dehydrogenase

, &
Pages 1994-2000 | Received 31 May 2011, Accepted 18 Jun 2011, Published online: 22 May 2014
 

Abstract

The industrial yeast Candida utilis can grow on media containing xylose as sole carbon source, but cannot ferment it to ethanol. The deficiency might be due to the low activity of NADPH-preferring xylose reductase (XR) and NAD+-dependent xylitol dehydogenase (XDH), which convert xylose to xylulose, because C. utilis can ferment xylulose. We introduced multiple site-directed mutations in the coenzyme binding sites of XR and XDH derived from the xylose-fermenting yeast Candida shehatae to alter their coenzyme specificities. Several combinations of recombinant and native XRs and XDHs were tested. Highest productivity was observed in a strain expressing CsheXR K275R/N277D (NADH-preferring) and native CsheXDH (NAD+-dependent), which produced 17.4 g/L of ethanol from 50 g/L of xylose in 20 h. Analysis of the genes responsible for ethanol production from the xylose capacity of C. utilis indicated that the introduction of CsheXDH was essential, while overexpression of CsheXR K275R/N277D improved efficiency of ethanol production.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.