115
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Interaction of Dislocations with Carbides in BCC Fe Studied by Molecular Dynamics

, , , &
Pages 283-288 | Published online: 23 Mar 2017
 

Abstract

Iron carbide (Fe3C), also known as cementite, is present in many steels and has also been seen as nanosized precipitates in steels. We examine the interaction of edge dislocations with nanosized cementite precipitates in Fe by molecular dynamics. The simulations are carried out with a Tersoff-like bond order interatomic potential by Henriksson et al. for Fe-C-Cr systems. Comparing the results obtained with this potential for a defect free Fe system with results from previously used potentials, we find that the potential by Henriksson et al. gives significantly higher values for the critical stress, at least at low temperatures. The explanation was found to be the difference in the core structure of the edge dislocation. The results show that edge dislocations can unpin from cementite precipitates of sizes 1 nm and 2 nm even at a temperature of 1 K, although the stresses needed for this are high. On the other hand, a 4 nm precipitate is not sheared by edge dislocations at low temperatures (≤100 K) on our simulation timescale.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.