19
Views
17
CrossRef citations to date
0
Altmetric
Advanced Reactor

Apollo-L3, an Advanced Fuel Fusion Power Reactor Utilizing Direct and Thermal Energy Conversion

, , , , , , , , , & show all
Pages 791-801 | Published online: 10 Aug 2017
 

Abstract

The design of a 1000 MWe D-He3 tokamak fusion power plant, Apollo-L3, is presented. The reactor operates in the first plasma stability regime and relies on both direct and thermal conversion of the thermonuclear energy to electricity. The synchrotron energy is converted directly to electricity via rectennas at 80% efficiency and the thermal energy is converted through an organic coolant at 44% efficiency. It is designed with a low neutron wall loading (0.1 MW/m2) which allow a permanent first wall to be used. The overall net efficiency is 47%. A low level of induced radioactivity and the low afterheat in the reactor allows the low activation ferritic steel waste to be treated as Class A and the system to be considered as a Level 1 (Inherently Safe) device. The cost of electricity (COE) is 69 mills/kWh making it competitive with recent advanced DT reactor designs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.