4
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Subignited, ITER-Like Designs—A Question of Confinement Margin

&
Pages 176-181 | Published online: 09 May 2017
 

Abstract

If the next-step International Thermonuclear Experimental Reactor (ITER) is designed to operate at finite energy multiplication (Q ∼ 10 to 20), as opposed to ignition (Q ∼ ∞), appreciable reductions in size and cost will result. Ignition will be attainable in such a “high-Q targeted” device under slightly enhanced confinement conditions. For example, with the nominal design guidelines from the ITER Conceptual Design Activity (CDA), designing for Q = 15 instead of ignition results in ∼20% savings in size and cost. Ignition would still be achievable in such a reduced-size device if the L-mode energy confinement enhancement factor (i.e., H factor) is ∼15% higher than the assumed nominal value of 2.0. This size/cost impact is large compared to other sensitivities, and the range of H-fact or improvement needed to recoup ignition is small compared to the uncertainty in the confinement scalings themselves.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.