200
Views
32
CrossRef citations to date
0
Altmetric
Technical Paper

A New Approach for Assessing the Required Tritium Breeding Ratio and Startup Inventory in Future Fusion Reactors

&
Pages 309-353 | Published online: 09 May 2017
 

Abstract

Accurately estimating the required tritium breeding ratio (TBR) λr in fusion reactor systems is necessary to guide fusion research and development and to assess the feasibility of fusion reactors as a self-sufficient energy source. This is especially true when one considers the limits imposed by the present-day breeding performance of breeder blanket candidates. Studies of this subject have been performed in the past, with particular emphasis on developing appropriate dynamic simulations of the fuel cycle. In the last few years, development of new dynamic and integrated fusion fuel cycle tritium computer codes has moved away from general residence-time models and instead incorporated more comprehensive and realistic models. Furthermore, detailed and rigorous computer codes that model the dynamic retention behavior of individual components inside the fuel cycle, in particular the torus plasma-facing components in a tokamak, have been vastly improved with uncertainties identified. A more efficient and intuitive methodology for tritium self-sufficiency analyses is developed based on an analytical scheme that makes use of different types of tritium inventories inside the fuel cycle as calculated from detailed numerical simulations. Short-term and long-term tritium inventories are differentiated as well as tritium lost through waste material. Also, the tritium fuel cycle is split into a number of independent tritium migration paths to aid in the development of an integrated tritium balance for which λr or other parameters of interest can be solved analytically. Tritium startup requirements are also examined. An important side benefit derived from using the aforementioned methodology is that the uncertainty in λr for a given reactor design can easily be calculated from uncertainty ranges characterizing a number of relevant reactor operation and fuel cycle parameters. Maximum tritium inventory limits were considered from safety and operational standpoints. A wide range of parametric studies were conducted with various scenarios to forecast changes in λr when the reactor design is modified. For example, it was determined that with most current estimates of the achievable TBR λa, ranging from 1.04 to 1.07, a small design window for both the fuel fractional burnup and the downtime of tritium reprocessing components severely limits any proposals for a reactor operating scenario that will be valid for a reasonably paced fusion growth rate.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.