24
Views
1
CrossRef citations to date
0
Altmetric
Technical Paper

Validation of COBRA-TF Critical Heat Flux Predictions for a Small-Hydraulic-Diameter Geometry under Natural Boiling Conditions

, , , , &
Pages 69-74 | Published online: 10 Apr 2017
 

Abstract

Critical heat flux (CHF) at a natural boiling condition is an important phenomenon for a research reactor having a small-hydraulic-diameter geometry under a large-break loss-of-coolant accident condition. Accurately predicting the CHF under this condition is very important; therefore, the CHF models used in the best-estimate codes must be validated using appropriate experimental data for a given geometry. The present work focuses on validating the CHF calculations and models within the COolant Boiling in Rod Arrays-Two Fluid (COBRA-TF) code by simulating two sets of experiments, which were performed in tubes and annuli with different length-to-diameter ratios. In this work, the cocurrent upflow and downflow correlations developed by Mishima and Nishihara and Holowach et al. and Zuber correlations for the CHF used in COBRA-TF are validated against the experimental data obtained by Monde and Yamaji and Islam et al. Conclusions on the predictive capability of COBRA-TF for the CHF calculations for small-hydraulic-diameter geometry under natural boiling conditions are provided with the description of the correlations and models used.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.