4
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Fission Product Release from Spent UO2 Fuel Under Uranium-Saturated Oxic Conditions

, , &
Pages 204-213 | Published online: 12 May 2017
 

Abstract

Observations on the mechanism of oxidation of UO2 in air and results from X-ray photoelectron spectroscopy surface analyses of UO2 electrodes exposed to aqueous solutions show that the dissolving solid under oxic conditions is essentially U3O7 formed by oxygen diffusion on the UO2 surface. Saturation effects with respect to U3O7 can be of importance for the overall reaction rate if oxygen transport to the dissolving surface is limited. The release of soluble radionuclides in solid solution with the UO2 matrix appears to be limited by the mass transfer rates for the conversion of U3O7 to alteration products such as schoepite. The rates of 90Sr and 137Cs release decrease with the square root of time under uranium-saturated conditions. This time dependence may be explained by either grainboundary diffusion or by oxygen diffusion through the alteration product phase.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.