9
Views
1
CrossRef citations to date
0
Altmetric
Technical Paper

An Estimation of Core Damage Frequency of a Pressurized Water Reactor During Midloop Operation Due to Loss of Residual Heat Removal

, &
Pages 23-33 | Published online: 13 May 2017
 

Abstract

The core damage frequency caused by loss of residual heat removal (RHR) events was assessed during midloop operation of a Westinghouse-designed threeloop pressurized water reactor. The assessment considers two types of outages (refueling and drained maintenance) and uses failure data collected specifically for shutdown condition. Event trees were developed for five categories of loss of RHR events. Human actions to mitigate the loss of RHR events were identified and human error probabilities were quantified using the human cognitive reliability (HCR) and the technique for human error rate prediction (THERP) models. The results showed that the core damage frequency caused by loss of RHR events during midloop operation was 3.4 × 10−5 per year. The results also showed that the core damage frequency can be reduced significantly by removing a pressurizer safety valve before entering midloop operation. The establishment of reflux cooling, i.e., decay heat removal through the steam generator secondary side, also plays an important role in mitigating the loss of RHR events during midloop operation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.