14
Views
7
CrossRef citations to date
0
Altmetric
Technical Paper

Thermal-Hydraulic Analysis of Bulk Evaporation and Condensation in a Multiphase Nuclear Fuel Cell

&
Pages 57-70 | Published online: 12 May 2017
 

Abstract

A thermal-hydraulic model is developed to simulate and study the dynamic behavior of bulk evaporation and condensation processes in a multiphase nuclear fuel cell. The phase-change process is driven and controlled by internal heat generation and wall heat removal under constant volume condition. The modeling involves variable gravity conditions that allow for performance analysis of the multiphase nuclear fuel for terrestrial and space applications. A complete set of governing equations for both liquid and vapor phases is developed and numerically solved. The model is used to simulate the operation of a multiphase nuclear fuel cell at zero-gravity and microgravity levels. The temperature and phase distribution, the flow field, and the evolution of the liquid-vapor interface are computed and demonstrated.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.