83
Views
3
CrossRef citations to date
0
Altmetric
Review

The potential impact of novel investigational compounds on human fertility

&
Pages 1179-1189 | Published online: 21 Sep 2006
 

Abstract

There is considerable concern that the incidence of infertility in humans may be increasing, in some instances due to the action of bioactive xenobiotic compounds found in our environment; for example, high concentrations of xenobiotics with estrogenic activity can interfere with normal testicular function and fertility. However, recent studies have shown that very low concentrations of several estrogenic xenobiotics can have subtle, unexpected effects on sperm function. When tested in vitro, these compounds stimulate spermatozoa to become fertile very quickly, but continued stimulation causes them to burn out and lose fertilising ability; similar responses occurring in vivo could reduce fertility. In contrast, several other compounds, structurally related to amfetamine, have been shown to act on spermatozoa in vitro in a positive manner, stimulating cells to ‘switch on’ quickly and then preventing burnout so that they maintain fertilising potential; similar responses occurring in vivo could enhance fertility. These results could have implications for either reducing or enhancing natural fertility.

Acknowledgements

Original research discussed in this review was supported by grants to LRF from several sources, including The Wellcome Trust, the Kinetique Biomedical Seed Fund and Pfizer Global Research and Development (Sandwich, UK).

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,464.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.