155
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Galanin receptor subtypes 1 and 2 as therapeutic targets in head and neck squamous cell carcinoma

, MD PhD, , MD PhD & , PhD
Pages 289-302 | Published online: 12 Feb 2010
 

Abstract

Importance of the field: Despite advances in the therapeutic approaches for head and neck squamous cell carcinoma (HNSCC) at some sites, no substantial improvement in treatment efficacy and survival has occurred over the past several decades. Recent application of molecular biology has focused on the importance of galanin and its receptors as potential therapeutic targets for HNSCC.

Areas covered in this review: Our aim is to examine galanin receptor 1 (GALR1) and galanin receptor 2 (GALR2) as HNSCC therapeutic targets and explore opportunities and strategies for making use of GALR1 and GALR2 signaling.

What the reader will gain: This review provides recent data about galanin receptor signaling and function in various cell types, especially HNSCC. Signaling through GALR1 induces cell cycle arrest and suppresses proliferation in HNSCC. Similar to GALR1, GALR2 not only induces cell cycle arrest but also apoptosis, which was not observed with GALR1.

Take home messages: GALR1 and GALR2 act as tumor suppressors in HNSCC, in a p53-independent manner. The current data suggest that GALR1 and GALR2 are potentially significant therapeutic targets and prognostic factors in HNSCC.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,049.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.