186
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Therapeutic targeting of EGFR in malignant gliomas

, MD PhD, , MD PhD & , MD PhD
Pages 303-316 | Published online: 12 Feb 2010
 

Abstract

Importance of the field: Despite the improved prognosis for many cancer patients, the survival of those with malignant gliomas (MGs) remains dismal. Even with aggressive intervention, including surgery, chemotherapy and radiotherapy, the overall 2-year survival rate is only 25% in the most optimistic series, and 5-year survival rates are consistently in the low single digits. Therefore, it is evident that novel therapeutic paradigms are necessary to overcome the inherent limitations of conventional treatments. EGFR gene overexpression can be found in 40 – 50% of patients with MGs, whereas its expression is very low in normal brain. Therapeutic targeting of EGFR has indicated clinical success in the treatment of MGs.

Areas covered in this review: The purpose of this review is to discuss the current status of several EGFR-targeted therapies in MGs patients and address the efficacy of these drugs as monotherapy or in combination with other drugs and/or treatments. We also emphasize the lessons learned and the future perspectives in the development of EGFR-targeted therapies for MGs.

What the reader will gain: A more comprehensive understanding of the molecular, structural and biological characteristics of EGFR and the mechanisms of action of EGFR-targeted antagonists will most likely contribute to the successful use of strategies of EGFR-targeted therapy in the clinic.

Take home message: Therapeutic targeting of EGFR include anti-EGFR mAbs, small-molecule EGFR tyrosine kinase inhibitors, peptide vaccination therapy and other therapeutic strategies. Each EGFR antagonist has its own advantages and limitations in terms of BBB crossing, ease of delivery, combination therapies and potential toxicity. Therefore, a multiple approach combining different agents that target EGFR signaling at multiple levels seems to have potential as future therapeutics for MGs, once the technical and safety issues unique to each of the approaches are overcome.

Acknowledgements

We thank Hanfeng Guan at the Institute of Physiological Chemistry of Ulm University, Germany, for helpful discussions. All authors contributed equally to this work.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,049.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.