167
Views
23
CrossRef citations to date
0
Altmetric
Review

Protein kinase C isozymes as potential therapeutic targets in immune disorders

, &
Pages 535-552 | Published online: 15 Apr 2008
 

Abstract

Background: Members of the protein kinase C (PKC) family are key signalling mediators in immune responses, and pharmacological inhibition of PKCs may be useful for treating immune-mediated diseases. Objective: To review and discuss the insights gained so far into various PKC isozymes and the therapeutic potential and challenges of developing PKC inhibitors for immune disorder therapy. Methods: A literature review of the role of PKCs in immune cell signalling and recent studies describing immune functions associated with PKC isozyme deficiency in relevant mouse disease models, followed by specific case studies of current and potential therapeutic strategies targeting PKCs. Results/conclusion: There is vast amount of data supporting PKC isozymes as attractive drug targets for certain immune disorders. Although the development of specific PKC isozyme inhibitors has been challenging, some progress has been made. It remains to be seen if broad-scale or isozyme-selective inhibition of PKC will have clinical efficacy.

Acknowledgements

The authors apologize for not being able to cite original work of many colleagues due to space restraints. We thank Min Wong and Chris Gabel for helpful suggestions and critical comments on the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,049.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.