758
Views
46
CrossRef citations to date
0
Altmetric
Reviews

Targeting RhoA/ROCK pathway in pulmonary arterial hypertension

, MD PhD
Pages 355-363 | Published online: 27 Mar 2012
 

Abstract

Introduction: Pulmonary arterial hypertension (PAH) is a rare disease with a complex pathogenesis. It is often associated with an increased vascular resistance, whilst in the more advanced stages there is a remodelling of the vascular walls. PAH has an intricate involvement of various signaling pathways, including the ras homolog family member A (RhoA)–Rho kinase (ROCK) axis. Currently, available therapies are not always able to significantly slow PAH progression. Therefore, newer approaches are needed.

Areas covered: In this review, areas covered include the role of the RhoA/ROCK in PAH pathogenesis and the plausibility of its therapeutic targeting. Furthermore, various inhibitory compounds are discussed, including Fasudil and SB-772077-B.

Expert opinion: Currently, specific RhoA/ROCK inhibition is the most promising therapeutic approach for PAH. Research has shown that it suppresses both the components of this axis and the upstream upregulating mediators. An inhaled RhoA/ROCK inhibitor may be a successful future therapy; however, further clinical trials are needed to support this approach.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,049.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.