1,012
Views
105
CrossRef citations to date
0
Altmetric
Reviews

Stimuli-responsive liposome-nanoparticle assemblies

&
Pages 1025-1040 | Published online: 11 Jun 2011
 

Abstract

Introduction: Nanoscale assemblies are needed that achieve multiple therapeutic objectives, including cellular targeting, imaging, diagnostics and drug delivery. These must exhibit high stability, bioavailability and biocompatibility, while maintaining or enhancing the inherent activity of the therapeutic cargo. Liposome-nanoparticle assemblies (LNAs) combine the demonstrated potential of liposome-based therapies, with functional nanoparticles. Specifically, LNAs can be used to concentrate and shield the nanoparticles and, in turn, stimuli-responsive nanoparticles that respond to external fields can be used to control liposomal release. The ability to design LNAs via nanoparticle encapsulation, decoration or bilayer-embedment offers a range of configurations with different structures and functions.

Areas covered: This paper reviews the current state of research and understanding of the design, characterization and performance of LNAs. A brief overview is provided on liposomes and nanoparticles for therapeutic applications, followed by a discussion of the opportunities and challenges associated with combining the two in a single assembly to achieve controlled release via light or radiofrequency stimuli.

Expert opinion: LNAs offer a unique opportunity to combine the therapeutic properties of liposomes and nanoparticles. Liposomes act to concentrate small nanoparticles and shield nanoparticles from the immune system, while the nanoparticle can be used to initiate and control drug release when exposed to external stimuli. These properties provide a platform to achieve nanoparticle-controlled liposomal release. LNA design and application are still in infancy. Research concentrating on the relationships among LNA structure, function and performance is essential for the future clinical use of LNAs.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 876.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.