399
Views
54
CrossRef citations to date
0
Altmetric
Original Research

Liposomal quercetin: evaluating drug delivery in vitro and biodistribution in vivo

, , , , , & show all
Pages 599-613 | Published online: 18 May 2012
 

Abstract

Objective: The drug-loaded PEGylated nanomaterials have shown effective cell-killing in vitro, but to the best of authors' knowledge there have been no reports of successful drug delivery in vitro and in vivo using polyethyleneglycol-2000-distearoyl phosphatidyl ethanolamine (PEG2000-DSPE) nanomaterials loaded with unmodified drug molecules, such as quercetin (QUE). In this study, it remained an open question as to whether such formulations could prove effective in vitro and in vivo, and to study the distribution and clearance of PEG-DPSE-ylated lipid-based quercetin nanoliposomes (PEG2000-DPSE-QUE-NLs) as delivery vehicles for the anticancer drug in vitro and in vivo.

Research design and methods: PEG-DPSE layers were attached to QUE-NLs, dispersed in aqueous media and characterized using TEM and HPLC/UV spectroscopy. Tumor cell killing efficacy was assessed in vitro using MTT and trypan blue exclusion assays, and the distribution and clearance pathways, as well as repeated administration in rats, were studied by HPLC spectroscopy.

Results: PEG2000-DPSE-QUE-NLs were efficiently dispersed in aqueous media compared with controls, and PEGylated (PEG2000-DPSE) NLs were found to be effective drug delivery vehicles when simply loaded with QUE. The plasma QUE concentration decreased significantly (p < 0.05) after repeated administration of PEG2000-DSPE liposomal QUE. There was a slight ABC phenomenon with the PEG2000-DSPE-modified QUE liposomes.

Conclusion: The QUE/PEG2000-DPSE formulation was more effective than QUE in vitro on inhibiting the growth of glioma cancer cells. This work demonstrates that nanomaterials (PEG2000-DPSE) are effective drug delivery vehicles in vivo as tumor-targeted drug carriers.

Acknowledgments

The authors would like to thank RM Li for the cell lines, Hubei Provincial Key Laboratory of Embryo Stem Cells for providing the facility for assisting with the experiments, ZQ Liu and JB Feng for assisting with the flow cytometry facility, and DS Li for chemistry discussion.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 876.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.