260
Views
19
CrossRef citations to date
0
Altmetric
Original Research

Development and optimization of polymeric nanoparticles of antitubercular drugs using central composite factorial design*

, &
Pages 31-43 | Published online: 27 Jun 2013
 

Abstract

Objective: The objective of the present study was to develop sustained release biodegradable polymeric nanoparticles (PNs) of two anti-tubercular drugs (ATDs), rifampicin (RIF) and isoniazid (INH) using circumscribed central composite factorial design (CCD) and evaluate in vivo uptake potential using rhodamine labeled PNs (RPNs).

Methods: CCD was employed to study the influence of independent formulation factors, drug:polymer ratio (D:P) and surfactant concentration (SC), on dependent physicochemical characteristics, particle size (PS), polydispersity index (PI) and percentage entrapment efficiency (%EE) of the drugs. Optimized PNs prepared using response surface methodology (RSM) were evaluated for in vitro kinetics at endosomal macrophage pH 5.2 and physiological pH 7.4 and in vivo targeting potential in peritoneal macrophages (PMs) by fluorescence microscopy (FM) and confocal laser scanning microscopy (CLSM).

Results: Optimized PNs exhibited spherical and porous surface with a mean PS of 202 nm, PI of 0.178, zeta potential of -25.49 mV and %EE of 76.12% and 54.25% for RIF and INH, respectively.

Conclusions: Highly hydrophilic INH could be encapsulated with lypophilic RIF with efficiency. In vivo uptake studies of RPNs in PMs suggested endocytosis of RPNs without any surface adsorption phenomenon. Hence, further studies need to be performed for establishing the pharmacokinetic potential of PNs.

Acknowledgments

Support of drugs rifampicin and isoniazid was generously provided by Lupin Ltd, Lupin Research Park (Pune, India) and Resomer® RG 752H (Polylactide-co-glycolide, PLGA) was provided as a gift sample by Evonik Degussa Pvt. Ltd. (Mumbai, India).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 876.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.