545
Views
33
CrossRef citations to date
0
Altmetric
Original Research

Enhancement of oral insulin bioavailability: in vitro and in vivo assessment of nanoporous stimuli-responsive hydrogel microparticles

, , &
Pages 621-632 | Received 14 Sep 2015, Accepted 17 Feb 2016, Published online: 24 Mar 2016
 

ABSTRACT

Objective: Oral insulin administration suffers gastrointestinal tract (GIT) degradation and inadequate absorption from the intestinal epithelium resulting in poor bioavailability. This study entails in vitro and in vivo assessment of stimuli-responsive hydrogel microparticles (MPs) in an attempt to circumvent GI barrier and enhance oral insulin bioavailability.

Methods: Bacterial cellulose-g-poly(acrylic acid) (BC-g-P(AA)) hydrogel MPs were evaluated for morphology, swelling, entrapment efficiency (EE), in vitro insulin release and enzyme inhibition. The ex vivo mucoadhesion, insulin degradation and transport were investigated in excised intestinal tissues. The effect of MPs on paracellular transport was studied in Caco-2/HT29-MTX monolayers. The in vivo hypoglycemic effect and pharmacokinetics of insulin-loaded MPs were investigated in diabetic rats.

Results: Hydrogel MPs efficiently entrapped insulin (EE up to 84%) and exhibited pH-responsive in vitro release. The MPs decreased the proteolytic activity of trypsin (up to 60%). Insulin transport across monolayers was increased up to 5.9-times by MPs. Histological assessment of GI tissues confirmed the non-toxicity of MPs. Orally administered insulin-loaded MPs showed higher hypoglycemic effect as compared to insulin solution and enhanced relative oral bioavailability of insulin up to 7.45-times.

Conclusion: These findings suggest that BC-g-P(AA) MPs are promising biomaterials to overcome the barriers of oral insulin delivery and enhancing its bioavailability.

Declaration of interest

This work was financially supported by Universiti Kebangsaan Malaysia [Grant No: DPP-2014-123]. The authors gratefully thank Dr. Thecla Lesuffleur, (INSERM, Paris, France) for providing HT29-MTX cell line as gift. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed.

Supplemental data

Supplemental data for this article can be accessed here.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 876.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.