74
Views
3
CrossRef citations to date
0
Altmetric
Review

In-vitro screening of the antiestrogenic activity of chemicals

&
Pages 605-617 | Published online: 18 May 2008
 

Abstract

Background: Many chemicals have the potential to interfere with the endocrine systems of humans and wildlife, leading to adverse health effects. In the tiered testing strategies developed for regulatory hazard assessment, in-vitro screens could serve for prioritisation of compounds and for guiding subsequent testing. Objective: To describe in-vitro assays to detect antiestrogenic activity of chemicals. Methods: Antiestrogenicity was considered in this review as any inhibition or reduction of estrogen-induced processes due to interference with the normal functioning of the estrogen receptor pathway. Accordingly, in-vitro screening assays for antiestrogenicity have to consider all the possible mechanisms by which this inhibition may occur. Such assays include binding assays, cell proliferation assays, reporter gene assays, and gene activation/protein production assays. Results/conclusions: While binding assays appear to be of limited value in assessing antiestrogenicity, assays using differentiated cells with metabolic competence and a varied receptor/regulatory factor equipment have the capability to detect various modes of antiestrogenic action.

Acknowledgements

This work has been supported in part by INIA project RTA2006-00022-00-00 to JMN. The contribution of HS was financially supported by the EU-funded project OSIRIS (GOCE-CT-2007-037017).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 727.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.