310
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Whole-organism high-throughput screening against Trypanosoma brucei brucei

, BSc (Hons) PhD (Research Fellow) & , BSc (Hons) PhD
Pages 495-507 | Published online: 31 Mar 2013
 

Abstract

Introduction: Human African trypanosomiasis (HAT) occurs as a result of infection with the protozoan parasites Trypanosoma brucei gambiense and T.b. rhodesiense and is nearly always fatal without treatment. However, current therapeutic options are severely limited and there is a desperate need for new compounds to treat the disease. Whole-cell high-throughput screening (HTS) is a technique frequently used to identify compounds with trypanocidal activity.

Areas covered: The authors examine the development of whole-organism HTS assays for T.b. brucei. The authors describe the successes achieved through HTS and discuss the advantages and disadvantages of whole-organism HTS.

Expert opinion: Despite hundreds of trypanocidal molecules being identified by whole-organism HTS, very few have progressed into preclinical development. The failure of molecules identified by HTS to progress along the drug development pathway is due to a multitude of factors including undrug-like molecules and molecules having poor pharmacodynamics/kinetic properties. Future studies should focus on screening libraries that contain drug-like molecules that possess some of the properties required in the final compound.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,340.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.