129
Views
58
CrossRef citations to date
0
Altmetric
Article

Increased Susceptibility of Juvenile Chinook Salmon to Vibriosis after Exposure to Chlorinated and Aromatic Compounds Found in Contaminated Urban Estuaries

, , , , , , , & show all
Pages 257-268 | Received 09 Jan 2001, Accepted 14 May 2001, Published online: 09 Jan 2011
 

Abstract

Saltwater-adapted juvenile chinook salmon Oncorhynchus tshawytscha exposed to aromatic and chlorinated compounds, representative of contaminants found in urban estuaries in Puget Sound, have a higher susceptibility to vibriosis than do fish exposed only to the solvent vehicle. Susceptibility to vibriosis was assessed by examining the percent cumulative mortality of the salmon after exposure to the bacterial pathogen Vibrio anguillarum. The aromatic and chlorinated compounds examined consisted of a sediment extract from the Hylebos Waterway that was enriched in butadienelike compounds (chlorinated-enriched Hylebos Waterway sediment extract (CHWSE)), a model mixture of polycyclic aromatic hydrocarbons (PAHs), a polychlorinated biphenyl mixture (Aroclor 1254), hexachlorobutadiene (HCBD), and 7,12-dimethylbenz(a)anthracene (DMBA). Two trials were conducted. In trial l, the percent cumulative mortality of juvenile chinook salmon exposed to V. anguillarum after receiving either CHWSE, HCBD, or the model mixture of PAHs ranged from 28% to 31% compared with the 16% observed in the acetone:emulphor control group at 7 d post-bacterial challenge. In trial 2, the net cumulative mortality of juvenile chinook salmon exposed to V. anguillarum after receiving either DMBA or Aroclor 1254 ranged from 46% to 49% compared with the 25% observed in the acetone:emulphor control group at 9 d postchallenge. The differences in mortality between groups of fish in the treated and control groups in both trials were significant at P ≤ 0.05. These findings suggest that a higher predisposition to infection and subsequent disease can occur in salmon exposed to chemical contaminants found in urban estuaries of Puget Sound, Washington.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.