61
Views
7
CrossRef citations to date
0
Altmetric
Article

Relative Susceptibility and Effects on Performance of Rio Grande Cutthroat Trout and Rainbow Trout Challenged with Myxobolus cerebralis

, &
Pages 1406-1414 | Received 09 Nov 2006, Accepted 30 Apr 2007, Published online: 09 Jan 2011
 

Abstract

We evaluated the susceptibility of Rio Grande cutthroat trout (RGCT) Oncorhynchus clarkii virginalis to infection by Myxobolus cerebralis in a laboratory experiment. In the same experiment, rainbow trout (RBT) O. mykiss were similarly exposed to M. cerebralis as a reference of known sensitivity to the parasite. Treatments consisting of six parasite concentrations (0, 50, 100, 250, 500, and 1,000 triactinomyxons [TAMS] per fish) were randomized within a complete block design using RGCT and RBT fry beginning at 60 d posthatch (600 degree-days at 10°C). The laboratory experiment was terminated at 130 d postexposure (1,900 degree-days at 10°C). Diagnostic metrics included clinical signs (behavioral and black tail), survival, myxospore counts, histology, and a swimming performance challenge. Clinical signs of whirling disease were observed within both species at 500 and 1,000 TAMs/fish by 66 d postexposure to the disease. Rio Grande cutthroat trout exhibited significantly lower survival (50% cumulative mortality at 1,000 TAMs/fish) and a significant concentration response compared with RBT (8% cumulative mortality at 1,000 TAMs/fish). Histological scoring of cranial sections using a 0-5 scale of increasing pathogenic effect revealed greater disease severity in RGCT (3.20) than in RBT (2.43) at 100 TAMs/fish but no difference at 1,000 TAMs/fish (4.15 and 4.12, respectively). Swimming performance revealed detectably lower critical swimming speed in both RGCT and RBT in relation to increased parasite concentrations, the RGCT exhibiting detectably lower critical swimming speeds than the RBT at increased parasite concentration. If M. cerebralis were to spread to areas supporting RGCT, population-level effects may occur.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.