253
Views
94
CrossRef citations to date
0
Altmetric
Article

Geochemical Signatures in Otoliths Record Natal Origins of American Shad

, &
Pages 57-69 | Received 12 Feb 2007, Accepted 27 Jul 2007, Published online: 09 Jan 2011
 

Abstract

Population connectivity is a critical component in the life history dynamics of anadromous fishes and in the persistence of local populations. We used geochemical signatures in the otoliths of American shad Alosa sapidissima to determine natal origins and estimate rates of straying among river-specific populations along the U.S. Atlantic coast. Stable isotope (δ13C, δ18O and 87Sr:86Sr) and elemental (Mg: Ca, Mn: Ca, Sr: Ca and Ba: Ca) signatures in otoliths of juvenile American shad from rivers from Georgia to New Hampshire varied significantly, allowing for an average of 91% cross-validated accuracy when classifying individual fish to their natal rivers. We also found significant interannual variability in the geochemical signatures from several rivers, due largely to differences in δ18O values among years. We then used the ground-truthed geochemical signatures in the otoliths of juvenile American shad to identify the natal origins of spawning adults in the York River system in Virginia. Approximately 6% of the spawning adults collected in the York River were strays from other rivers. Of the remaining fish, 79% were spawned in the Mattaponi River and 21% in the Pamunkey River. The combined results of this and other recent studies suggest that although most American shad spawning in the York River were homing to their natal river, there was much less fidelity to individual tributaries. Small-scale straying could allow fish spawned in the Mattaponi River to subsidize spawning in the Pamunkey River, which has experienced persistent recruitment failure.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.