116
Views
8
CrossRef citations to date
0
Altmetric
Review

Breast cancer metastasis progression as revealed by intravital videomicroscopy

&
Pages 1271-1279 | Published online: 10 Jan 2014
 

Abstract

Metastasis is the spread of cells from a primary tumor to a distant site, where they arrest and grow to form a secondary tumor. Conventional metastasis models have focused primarily on analysis of end point tumor formation following inoculation with tumor cells. This approach can be used to measure the metastatic potential of cell lines, the morphology of metastases and their vasculature and the overall effectiveness of treatment strategies. However, it cannot, reveal the dynamics of metastatic progression, tumor cell interactions with host tissues or the characteristics of blood flow within the tumor microvasculature. Intravital videomicroscopy has been developed to visualize and quantify the movement of tumor cells and their interactions with host tissues as they travel through metastatic pathways within the body and arrest at secondary sites. Intravital videomicroscopy can also be used to quantify the morphology and functional capacity of tumor microvasculature, as well as the timing and dynamic effects of drugs targeted to disrupt tumor vasculaturization. With the development of new fluorescent probes and reporter genes, intravital videomicroscopy has the potential to provide evidence of the timing and location of metabolic processes within the metastatic cascade that may serve as specific targets for the treatment of breast cancer.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.