182
Views
31
CrossRef citations to date
0
Altmetric
Review

Bluetongue vaccines: the past, present and future

, , , &
Pages 191-204 | Published online: 09 Jan 2014
 

Abstract

Bluetongue (BT) is a noncontagious and arboviral disease of both domestic and wild ruminants. The disease is enzootic in areas where reservoirs (cattle and wild ruminants) and vectors exist for the BT virus (BTV). A total of 24 BTV serotypes have been recognized worldwide. The major control measures include restriction of animal movement, vector control applying insecticides, slaughter of infected animals and vaccination. Prophylactic immunization of sheep against BT is the most practical and effective control measure to combat BT infection. At present, attenuated vaccines are used in the Republic of South Africa, the USA and other countries. However, EU countries were using attenuated vaccines, only recently shifting to inactivated vaccines owing to their safety and efficacy. In India, inactivated vaccines are in experimental stages and are expected to be on the market shortly. Inactivated vaccines generate serotype-specific long-lasting protective immunity after two injections, and may help in controlling epidemics. Differentiating infected from vaccinated animals (DIVA) is theoretically possible with inactivated vaccines but has not yet been developed, whereas the attenuated live vaccines are not candidates for DIVA. Attenuated live vaccines are efficacious but safety issues are of great concern. New-generation vaccines (subunit, virus-like particles, core-like particles and vectored) can be employed for DIVA. Recombinant vaccines, which generate cross-protection against multiple BTV serotypes, have great potential in BT vaccine regimens. Furthermore, new-generation vaccines are safe and efficacious experimentally, but large-scale field trials are warranted. Alternative areas, such as antivirals, siRNA, interferon and nanotechnology, may be of future use in the control of BT. We give an overview of BT vaccines, starting from conventional to recent developments, and their feasibility in controlling BT infection.

Acknowledgements

The authors would like to thank the Director, Indian Veterinary Research Institute (IVRI) and the staff of Enterorespiratory and Pox Virus Laboratories, Division of Virology, IVRI, Mukteswar, India.

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.