37
Views
10
CrossRef citations to date
0
Altmetric
Review

Cell-surface receptor for thyroid hormone and tumor cell proliferation

, , , , , , & show all
Pages 753-761 | Published online: 10 Jan 2014
 

Abstract

Integrin αVβ3 is a structural protein of the plasma membrane that transduces signals from extracellular matrix proteins and has recently been shown to contain a novel receptor for thyroid hormone. Thyroid hormone signals are converted by αVβ3 into mitogen-activated protein kinase (MAPK) (ERK1/2) activation and downstream intracellular events in the cell nucleus. The latter include post-translational modification of the nuclear thyroid hormone receptor (TRβ1) and complex cellular or tissue responses, such as hormone-induced angiogenesis via basic fibroblast growth factor release. The integrin receptor for thyroid hormone has been shown to mediate proliferative effects of the hormone on certain tumor cell lines, including murine glioma/glioblastoma cells and human breast cancer (MCF-7) cells. More than one mechanism may account for this hormonal action, but in vitro studies indicate a direct hormonal action on cellular proliferation. Other possible mechanisms involve indirect actions via the release of tumor growth factors and effects on cell migration. In the intact organism, support of tumor growth by thyroid hormone is postulated to include angiogenesis. Crosstalk between the integrin thyroid hormone receptor and the epidermal growth factor receptor on the plasma membrane may be another mechanism by which thyroid hormone may modify tumor cell growth. Tetraiodothyroacetic acid (tetrac) is an iodothyronine analog that has no agonist activity at the integrin receptor, but inhibits binding of l-thyroxine and 3,5,3´-triiodo-l-thyronine to the receptor, preventing MAPK activation and consequent actions downstream of MAPK. In vitro studies and a preliminary in vivo experiment indicate that tetrac blocks the action of thyroid hormone on tumor cell proliferation. Both unmodified tetrac and tetrac reformulated as a nanoparticle that does not gain access to the cell interior are under investigation in animal models as anticancer agents. Also under study is the susceptibility of other human cancer cell lines to induction of proliferation by physiological concentrations of thyroid hormone.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 608.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.