31
Views
1
CrossRef citations to date
0
Altmetric
Review

Kinase-dependent pathways and the development of insulin resistance in hepatocytes

Pages 195-203 | Published online: 10 Jan 2014
 

Abstract

Hepatic insulin resistance is considered to be a dominant component in the pathogenesis of fasting hyperglycemia in Type 2 diabetes. The role of nutrients, free fatty acids and secretory inflammatory factors released by visceral fat in the pathogenesis of liver insulin resistance requires clarification, but a number of signaling pathways and serine kinases have been implicated. These include the discovery of c-Jun N-terminal kinase, I κβ kinase, protein kinase C θ, δ and ε, and ribosomal protein S6 kinase 1 as critical regulators of insulin action and steatosis in liver. In this article, the causes and mechanisms involved in the development of hepatic insulin resistance, and the signaling pathways and kinases involved, will be discussed. Elucidation of the molecular mechanisms underlying regulation and specificity may prompt novel approaches to the pharmacological modulation of protein kinase activities involved in hepatic insulin resistance. This review will detail recent discoveries and highlight emerging kinase targets that hold potential to reduce hepatic insulin resistance and normalize blood glucose.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 608.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.