28
Views
0
CrossRef citations to date
0
Altmetric
Review

Phosphatonins: new hormones that control phosphorus homeostasis

, &
Pages 513-526 | Published online: 10 Jan 2014
 

Abstract

Phosphorus (Pi) plays an important role in nucleic acid synthesis, energy metabolism, bone mineralization and cell signaling, and is also present in sugars, phospholipids and phosphoproteins. Phosphate homeostasis is controlled by processes that regulate the intestinal absorption and renal excretion of Pi, and bone turnover. These processes are influenced by peptide and sterol hormones, such as parathyroid hormone and 1α,25-dihydroxyvitamin D (1α,25[OH]2D3). Recently, a new class of phosphate-regulating peptides has been discovered: phosphatonins. These factors, such as FGF-23, secreted frizzled-related protein-4, matrix extracellular phosphoglycoprotein and FGF-7, are circulating peptides with potent phosphaturic activity. These peptides inhibit Na/Pi transporters in renal epithelial cells and, therefore, increase renal Pi excretion. In addition, FGF-23 and secreted frizzled-related protein-4 inhibit 25-hydroxyvitamin D 1α-hydroxylase activity, reducing 1α,25(OH)2D3 synthesis and, thus, intestinal Pi absorption. Phosphatonins have been associated with hypophosphatemic diseases, such as tumor-induced osteomalacia, X-linked hypophosphatemic rickets, autosomal dominant hypophosphatemic rickets, autosomal recessive hypophosphatemic rickets and hyperphosphatemic disease (e.g., tumoral calcinosis). The aim of this article is to review the role of phosphatonins in Pi metabolism in normal and pathologic conditions and also to investigate the correlations among the various phosphatonins.

Financial & competing interests disclosure

This work was supported by grants from the Fondazione Ente Cassa di Risparmio di Firenze and the Fondazione Italiana Ricerca sulle Malattie dell’Osso. Fondazione Raffaella Becagli (to ML Brandi). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Notes

FRP: Frizzled-related protein; MEPE: Matrix extracellular phosphoglycoprotein; Pi: Phosphorus.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 608.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.