402
Views
0
CrossRef citations to date
0
Altmetric
Editorial

Does Kisspeptin signaling offer a new way to treat infertility?

, &
Pages 477-481 | Published online: 10 Jan 2014

Over the last 5 years, the field of reproductive biology has seen a surge of interest in the group of peptides known as Kisspeptin. These peptides are notably distributed in the placenta and pituitary gland, as well as specialized hypothalamic neurons Citation[1,2], and have recently emerged as important regulatory factors for control of the mammalian hypothalamo–pituitary–gonadal (HPG) axis Citation[3,4]. There has been much speculation over the therapeutic potential of Kisspeptin and its receptor, G-protein-coupled receptor (GPR)54, but could future infertility therapies that target GPR54 ever become a reality?

Kisspeptin: an emerging role in reproduction

In 2003, researchers made the ground-breaking observation that inactivating mutations of GPR54 in humans and mice lead to pubertal failure, together with hypogonadotrophic hypogonadism (low-circulating gonadotrophins and sex steroids) Citation[3,4]. Mutant mice lacking GPR54 had normal gonadotrophin-releasing hormone (GnRH) neuronal migration and responded to exogenous GnRH injection Citation[4]. Kiss1 mutant mice display a similar, albeit less severe, phenotype of hypogonadotrophic hypogonadism Citation[5,6]. Furthermore, central administration of a GPR54 antagonist suppresses GnRH release in female pubertal monkeys, reduces both mean LH levels and LH pulse amplitude in adult ovariectomized sheep and abolishes the postcastration rise in LH seen in adult mice, rats and sheep Citation[7]. Therefore, GPR54 signaling plays an important role in pubertal development and adult reproductive physiology.

Numerous investigators have demonstrated that central or peripheral injection of Kisspeptin to all mammalian species studied to date (including rats Citation[8–11], mice Citation[12,13], sheep Citation[13–15], hamsters Citation[16], monkeys Citation[17], pigs Citation[18], cows Citation[19] and humans Citation[20,21]) potently stimulates gonadotrophin release. This phenomenon is abolished by coadministration of the GnRH antagonist acyline Citation[9,17]. Most rodent hypothalamic GnRH neurons express GPR54 Citation[8,22]. Furthermore, Kisspeptin induces GnRH release from hypothalamic rat explants Citation[11] and increases electrophysiological activation of green-fluorescent protein-tagged GnRH neurons within mouse brain slices Citation[22]. Kisspeptin administration to rodents also induces c-fos (a marker of neuronal activation) immunoreactivity in GnRH cell bodies Citation[8]. Taken together, this evidence suggests that Kisspeptin administration stimulates endogenous hypothalamic GnRH release. Kisspeptin may also act within the pituitary gland, since GPR54 is expressed in the pituitary gland Citation[1,23], and some researchers have found that Kisspeptin administration can directly stimulate gonadotrophin release in vitroCitation[24,25]. Hence, the primary site of Kisspeptin’s action appears to be the hypothalamic GnRH neuron, although it remains a possibility that an additional (perhaps modulatory) action exists in the pituitary gland.

How does peripherally administered Kisspeptin gain access to the brain in order to stimulate GnRH release? An action at the median eminence of the hypothalamus seems likely; as one of the circumventricular organs, the median eminence has an incomplete blood–brain barrier and is the location where GnRH nerve terminals release GnRH into the hypophyseal portal circulation Citation[26]. Kisspeptin stimulates GnRH release from isolated mediobasal hypothalamus explants from wild-type but not GPR54-knockout mice Citation[27]. Since this effect is not abolished by tetrodotoxin (a potent inhibitor action of neuronal potential formation), this suggests a direct action on GnRH nerve terminals within the median eminence Citation[27]. Fos expression in the median eminence also increases following peripheral Kisspeptin administration. Hence, a GPR54-mediated action on GnRH nerve terminals within the median eminence may explain why peripherally administered Kisspeptin effectively stimulates gonadotrophin release.

The neuroanatomy of Kisspeptin neurons suggests a dual function for Kisspeptin signaling within the CNS. In rodents, primates and sheep, a population of specialized neurons expressing Kisspeptin is located in the hypothalamic arcuate nucleus (Arc) (equivalent to the infundibular nucleus in primates) Citation[12,28,29]. These Arc Kisspeptin neurons are negatively regulated by circulating sex steroids. In rodents, levels of Arc Kiss1 expression fall during the evening of proestrous (coincident with the LH surge) or during an estrogen- and progesterone-induced LH surge Citation[30]. However, levels of Arc Kiss1 expression rise after gonadectomy and subsequently fall if sex steroid replacement is given to these animals Citation[31]. A further population of Kisspeptin neurons is located in the anteroventral periventricular (AVPV) nucleus of rodents and sheep Citation[12,29], which is implicated in the generation of the LH surge Citation[32]. AVPV neurons are positively regulated by circulating sex steroids, in contrast to neurons of the Arc. In rodents, AVPV Kiss1 expression falls after ovariectomy Citation[31] and rises during the evening of proestrous or during an estrogen- and progesterone-induced LH surge Citation[30]. Thus, AVPV Kisspeptin neurons may play a role in generation of the LH surge in female rodents. Although no functional equivalent of the rodent AVPV is found in primates Citation[33], Kisspeptin may also play a role in the human preovulatory surge Citation[21]. Subcutaneous Kisspeptin administration to healthy women stimulates gonadotrophin release 20-fold more potently in the preovulatory phase of the menstrual cycle than in the follicular phase Citation[21]. The basis for this increased sensitivity to Kisspeptin is currently unknown.

Clinical studies: where are we now?

It was first demonstrated 4 years ago that exogenous Kisspeptin could stimulate gonadotrophin release in humans Citation[20]. Healthy human males were intravenously infused with Kisspeptin-54 in a double-blinded, placebo-controlled, crossover study Citation[20]. Dose-dependent increases in plasma gonadotrophins were observed. For example, a Kisspeptin-54 infusion rate of 4 pmol/kg/min more than doubled 90-min mean plasma LH, and increased mean plasma FSH by 18% when compared with saline. Subsequently, the first studies of Kisspeptin-54 administration to women were performed Citation[21]. Subcutaneous bolus injections of Kisspeptin-54 at doses between 0.2 and 6.4 nmol/kg dose-dependently increased plasma LH and FSH secretion. LH responses to a given dose of Kisspeptin were approximately seven-times higher than corresponding FSH responses, which is consistent with rodent data in showing the greater effect on LH than FSH Citation[21].

Preliminary results of a study of Kisspeptin administration within a model of human infertility were presented earlier this year Citation[34]. Patients with hypothalamic amenorrhea received subcutaneous bolus injections of either Kisspeptin-54 (6.4 nmol/kg) or saline. Kisspeptin potently increased mean LH 48-fold and FSH 16-fold when compared with saline injection. Fascinatingly, subjects with hypothalamic amenorrhea were over four-fold more responsive to Kisspeptin injection than previously studied healthy females in the follicular phase of the menstrual cycle Citation[34].

These initial clinical studies demonstrate the efficacy of Kisspeptin in stimulating gonadotrophin release in healthy and infertile human subjects. Hence, Kisspeptin can be regarded as a potential novel therapy for human infertility.

How safe is exogenous Kisspeptin likely to be?

Levels of circulating endogenous Kisspeptin rise to over 9000 pmol/l during the third trimester of normal human pregnancy due to placental production, which is in sharp contrast to the barely detectable plasma levels of Kisspeptin (1.3 pmol/l) observed in men and nonpregnant women Citation[35]. It has been suggested that placental Kisspeptin negatively regulates trophoblast invasion of uterine tissue; indeed, levels of KISS1 expression are significantly lower in invasive forms of gestational trophoblastic disease, such as choriocarcinoma, when compared with hydatiform mole or normal placental tissue Citation[36]. Regardless of the function of placental Kisspeptin, the fact that women are exposed to markedly raised endogenous levels throughout pregnancy provides some reassurance about its safety. Consistent with this observation, administration of single injections of Kisspeptin to healthy male and female subjects temporarily raised plasma Kisspeptin to levels comparable to those seen in pregnancy, and caused no adverse or behavioral effects, such as changes in libido (assessed by questionnaires) Citation[20,21]. No significant changes in heart rate or blood pressure were observed during these studies Citation[20,21], which is noteworthy given that vasoconstrictor properties of Kisspeptin have been demonstrated in vitroCitation[37].

It is important to consider the specificity of Kisspeptin’s actions. Until recently, the only known humoral action of Kisspeptin was on the HPG axis. However, evidence from cows Citation[19,38,39] and rats Citation[24] is emerging of a stimulatory action on pituitary growth-hormone release. In addition to the pituitary, hypothalamus and placenta, GPR54 is expressed in other regions of the brain, as well as the spleen, liver, pancreas and gonads Citation[1,2]. We must, therefore, remain open to the possibility that additional biological actions of Kisspeptin exist; indeed, effects on insulin secretion Citation[40] and hippocampal synaptic function Citation[41] have been suggested.

What advantages might Kisspeptin have over existing therapies?

Since clinical studies are in their early stages, we are limited in our ability to judge whether Kisspeptin is likely to provide a novel means of treating human infertility. However, the available evidence does at least point to several potential advantages of a therapeutic that targets GPR54.

As previously discussed, Kisspeptin appears to primarily act through stimulation of endogenous GnRH release, which, in turn, triggers endogenous gonadotrophin release Citation[8,9,11,17,22]. GPR54 agonists are, therefore, predicted to confer a lower risk of excessive ovarian stimulation than gonadotrophin injections Citation[42,43].

No orally bioavailable GPR54 agonist currently exists but its future discovery might offer a clear practical advantage over GnRH-and gonadotrophin-based therapies. A series of pentapeptide-based GPR54 agonists have been described Citation[44,45]. Furthermore, small-molecule GPR54 agonists have been identified, although detailed results of these have not been published Citation[46].

G-protein-coupled receptor 54 super agonists may offer a novel means of inducing medical castration. Continuous exposure of monkeys Citation[47] and rodents Citation[48] to exogenous Kisspeptin leads to desensitization of gonadotrophin responses after 3 h and 1 day of commencement of administration, respectively. Such desensitization is probably occurring at the GPR54 receptor, since monkeys remained responsive to exogenous GnRH at the end of continuous Kisspeptin infusion Citation[47]. Reduced Kiss1 expression is associated with metastasis in a number of solid tumors Citation[49]. Furthermore, KISS1 expression in purified human trophoblasts is significantly lower in choriocarcinoma when compared with hydatidifom mole or normal placental tissue Citation[36]. It would be fascinating to see if Kisspeptin functions as an antimetastatic factor in hormone-sensitive tumors; an agent that inhibited tumor metastasis as well as sex-steroid secretion would clearly have therapeutic potential.

It is important to recognize that Kisspeptin would offer no benefit to certain individuals, including those with incompetent GnRH function (such as the defective GnRH neuronal migration observed in Kallman’s syndrome Citation[50]) or a structural pituitary lesion. Furthermore, Kisspeptin would be predicted to offer no benefit in postmenopausal women, who already have raised circulating levels of gonadotrophins.

Conclusion

We are now beginning to understand the importance of GPR54 signaling. It is obligatory for pubertal development Citation[3,4] and it plays an important role in adult reproductive physiology Citation[7,9,12,13,17]. Initial clinical studies suggest that Kisspeptin potently and safely stimulates gonadotrophin release when administered to healthy volunteers Citation[20,21]. Furthermore, a preliminary report has emerged of its efficacy in a human model of infertility Citation[34]. The development and future availability of GPR54-based fertility and oncology therapeutics has become a very real possibility. Further studies are needed to determine if such agents will offer a distinct advantage over existing therapies.

Financial & competing interests disclosure

Channa N Jayasena is supported by a Wellcome Trust Research Training Fellowship. Waljit S Dhillo is supported by a Department of Health Clinician Scientist Award. This work is funded by an MRC Experimental Medicine project grant. The department is funded by an Integrative Mammalian Biology (IMB) Capacity Building Award and the NIHR Biomedical Research Centre Funding Scheme. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

References

  • Muir AI, Chamberlain L, Elsantibagy NA et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J. Biol. Chem.276(31), 28969–28975 (2001).
  • Ohtaki T, Shintani Y, Honda S et al. Metastasis suppressor gene KISS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature411(6837), 613–617 (2001).
  • de Roux N, Genin E, Carel JC et al. Hypogonadotropic hypogonadism due to loss of function of the KISS1-derived peptide receptor GPR54. Proc. Natl Acad. Sci. USA100(19), 10972–10976 (2003).
  • Seminara SB, Messager S, Chatzidaki EE et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med.349(17), 1614–1627 (2003).
  • Lapatto R, Pallais JC, Zhang D et al.Kiss1-/- mice exhibit more variable hypogonadism than Gpr54-/- mice. Endocrinology148(10), 4927–4936 (2007).
  • d’Anglemont de Tassigny X, Fagg LA, Dixon JP et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc. Natl Acad. Sci. USA104(25), 10714–10719 (2007).
  • Roseweir AK, Kauffman AS, Smith JT et al. Discovery of potent Kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J. Neurosci.29(12), 3920–3929 (2009).
  • Irwig MS, Fraley GS, Smith JT et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KISS-1 mRNA in the male rat. Neuroendocrinology80(4), 264–272 (2004).
  • Matsui H, Takatsu Y, Kumano S et al. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem. Biophys. Res. Commun.320(2), 383–388 (2004).
  • Navarro VM, Castellano JM, Fernandez-Fernandez R et al. Developmental and hormonally regulated messenger ribonucleic acid expression of KISS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KISS-1 peptide. Endocrinology145(10), 4565–4574 (2004).
  • Thompson EL, Patterson M, Murphy KG et al. Central and peripheral administration of Kisspeptin-10 stimulates the hypothalamic–pituitary–gonadal axis. J. Neuroendocrinol.16(10), 850–858 (2004).
  • Gottsch ML, Cunningham MJ, Smith JT et al. A role for Kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology145(9), 4073–4077 (2004).
  • Messager S, Chatzidaki EE, Ma D et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc. Natl Acad. Sci. USA102(5), 1761–1766 (2005).
  • Caraty A, Smith JT, Lomet D et al. Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology148(11), 5258–5267 (2007).
  • Arreguin-Arevalo JA, Lents CA, Farmerie TA et al. KISS-1 peptide induces release of LH by a direct effect on the hypothalamus of ovariectomized ewes. Anim. Reprod. Sci.101(3–4), 265–275 (2007).
  • Revel FG, Saboureau M, Masson-Pevet M et al. Kisspeptin mediates the photoperiodic control of reproduction in hamsters. Curr. Biol.16(17), 1730–1735 (2006).
  • Shahab M, Mastronardi C, Seminara SB et al. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc. Natl Acad. Sci. USA102(6), 2129–2134 (2005).
  • Lents CA, Heidorn NL, Barb CR et al. Central and peripheral administration of Kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts. Reproduction135(6), 879–887 (2008).
  • Kadokawa H, Matsui M, Hayashi K et al. Peripheral administration of Kisspeptin-10 increases plasma concentrations of GH as well as LH in prepubertal Holstein heifers. J. Endocrinol.196(2), 331–334 (2008).
  • Dhillo WS, Chaudhri OB, Patterson M et al. Kisspeptin-54 stimulates the hypothalamic–pituitary–gonadal axis in human males. J. Clin. Endocrinol. Metab90(12), 6609–6615 (2005).
  • Dhillo WS, Chaudhri OB, Thompson EL et al. Kisspeptin-54 stimulates gonadotropin release most potently during the preovulatory phase of the menstrual cycle in women. J. Clin. Endocrinol. Metab92(10), 3958–3966 (2007).
  • Han SK, Gottsch ML, Lee KJ et al. Activation of gonadotropin-releasing hormone neurons by Kisspeptin as a neuroendocrine switch for the onset of puberty. J. Neurosci.25(49), 11349–11356 (2005).
  • Kotani M, Detheux M, Vandenbogaerde A et al. The metastasis suppressor gene KISS-1 encodes Kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J. Biol. Chem.276(37), 34631–34636 (2001).
  • Gutierrez-Pascual E, Martinez-Fuentes AJ, Pinilla L et al. Direct pituitary effects of Kisspeptin: activation of gonadotrophs and somatotrophs and stimulation of luteinising hormone and growth hormone secretion. J. Neuroendocrinol.19(7), 521–530 (2007).
  • Suzuki S, Kadokawa H, Hashizume T. Direct Kisspeptin-10 stimulation on luteinizing hormone secretion from bovine and porcine anterior pituitary cells. Anim. Reprod. Sci.103(3–4), 360–365 (2008).
  • Herbison AE. Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocr. Rev.19(3), 302–330 (1998).
  • d’Anglemont de Tassigny X, Fagg LA, Carlton MB et al. Kisspeptin can stimulate gonadotropin-releasing hormone (GnRH) release by a direct action at GnRH nerve terminals. Endocrinology149(8), 3926–3932 (2008).
  • Rometo AM, Krajewski SJ, Voytko ML et al. Hypertrophy and increased Kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and ovariectomized monkeys. J. Clin. Endocrinol. Metab.92(7), 2744–2750 (2007).
  • Smith JT, Clay CM, Caraty A et al.KISS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology148(3), 1150–1157 (2007).
  • Smith JT, Popa SM, Clifton DK et al. Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J. Neurosci.26(25), 6687–6694 (2006).
  • Smith JT, Dungan HM, Stoll EA et al. Differential regulation of KISS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology146(7), 2976–2984 (2005).
  • Herbison AE. Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V). Brain Res. Rev.57(2), 277–287 (2008).
  • Witkin JW, Xiao E, Popilskis S et al. FOS expression in the gonadotropin-releasing hormone (GnRH) neuron does not increase during the ovarian steroid-induced GnRH surge in the rhesus monkey. Endocrinology135(3), 956–961 (1994).
  • Jayasena CN, Chaudhri OB, Nijher GK et al. Kisspeptin potently increases reproductive hormone release in women with hypothalamic amenorrhoea: a potential novel therapy for infertility. Presented at: Society for Endocrinology BES 2009 Meeting. Harrogate, UK, 16–19 March 2009.
  • Horikoshi Y, Matsumoto H, Takatsu Y et al. Dramatic elevation of plasma metastin concentrations in human pregnancy: metastin as a novel placenta-derived hormone in humans. J. Clin. Endocrinol. Metab.88(2), 914–919 (2003).
  • Janneau JL, Maldonado-Estrada J, Tachdjian G et al. Transcriptional expression of genes involved in cell invasion and migration by normal and tumoral trophoblast cells. J. Clin. Endocrinol. Metab87(11), 5336–5339 (2002).
  • Mead EJ, Maguire JJ, Kuc RE et al. Kisspeptins are novel potent vasoconstrictors in humans, with a discrete localization of their receptor, G protein-coupled receptor 54, to atherosclerosis-prone vessels. Endocrinology148(1), 140–147 (2007).
  • Kadokawa H, Suzuki S, Hashizume T. Kisspeptin-10 stimulates the secretion of growth hormone and prolactin directly from cultured bovine anterior pituitary cells. Anim. Reprod. Sci.105(3–4), 404–408 (2008).
  • Whitlock BK, Daniel JA, Wilborn RR et al. Interaction of estrogen and progesterone on Kisspeptin-10-stimulated luteinizing hormone and growth hormone in ovariectomized cows. Neuroendocrinology88(3), 212–215 (2008).
  • Hauge-Evans AC, Richardson CC, Milne HM et al. A role for Kisspeptin in islet function. Diabetologia49(9), 2131–2135 (2006).
  • Arai AC, Xia YF, Suzuki E et al. Cancer metastasis-suppressing peptide metastin upregulates excitatory synaptic transmission in hippocampal dentate granule cells. J. Neurophysiol.94(5), 3648–3652 (2005).
  • Diedrich K, Felberbaum R. New approaches to ovarian stimulation. Hum. Reprod.13(Suppl. 3), 1–13 (1998).
  • Elchalal U, Schenker JG. The pathophysiology of ovarian hyperstimulation syndrome – views and ideas. Hum. Reprod.12(6), 1129–1137 (1997).
  • Niida A, Wang Z, Tomita K et al. Design and synthesis of downsized metastin (45–54) analogs with maintenance of high GPR54 agonistic activity. Bioorg. Med. Chem. Lett.16(1), 134–137 (2006).
  • Tomita K, Niida A, Oishi S et al. Structure–activity relationship study on small peptidic GPR54 agonists. Bioorg. Med. Chem.14(22), 7595–7603 (2006).
  • Kaiser U. Identification of small molecule agonists and antagonists of the G-protein-coupled receptor GPR54 by high throughput screening. Presented at: 1st World Conference on Kisspeptin Signalling in the Brain. Cordoba, Spain, 8–10 October (2008).
  • Seminara SB, Dipietro MJ, Ramaswamy S et al. Continuous human metastin 45–54 infusion desensitizes G protein-coupled receptor 54-induced gonadotropin-releasing hormone release monitored indirectly in the juvenile male Rhesus monkey (Macaca mulatta): a finding with therapeutic implications. Endocrinology147(5), 2122–2126 (2006).
  • Thompson EL, Murphy KG, Patterson M et al. Chronic subcutaneous administration of Kisspeptin-54 causes testicular degeneration in adult male rats. Am. J. Physiol. Endocrinol. Metab.291(5), E1074–E1082 (2006).
  • Makri A, Pissimissis N, Lembessis P et al. The Kisspeptin (KiSS-1)/GPR54 system in cancer biology. Cancer Treat. Rev.34(8), 682–692 (2008).
  • Kallman FJ, Schoenfeld WA, Barrera SE. The genetic aspects of primary eunuchoidism. Am. J. Ment. DefficiencyXLVII203–XLVII236 (1944).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.