202
Views
44
CrossRef citations to date
0
Altmetric
Review

Microelectrical sensors as emerging platforms for protein biomarker detection in point-of-care diagnostics

, , , , , , & show all
Pages 749-755 | Published online: 09 Jan 2014
 

Abstract

Current methods used to measure protein expression on microarrays, such as labeled fluorescent imaging, are not well suited for real-time, diagnostic measurements at the point of care. Studies have shown that microelectrical sensors utilizing silica nanowire, impedimetric, surface acoustic wave, magnetic nanoparticle and microantenna technologies have the potential to impact disease diagnosis by offering sensing characteristics that rival conventional sensing techniques. Their ability to transduce protein binding events into electrical signals may prove essential for the development of next-generation point-of-care devices for molecular diagnostics, where they could be easily integrated with microarray, microfluidic and telemetry technologies. However, common limitations associated with the microelectrical sensors, including problems with sensor fabrication and sensitivity, must first be resolved. This review describes governing technical concepts and provides examples demonstrating the use of various microelectrical sensors in the diagnosis of disease via protein biomarkers.

Acknowledgements

The authors thank Ryan T Noonan for his assistance with copyediting the manuscript.

Financial & competing interests disclosure

This work was supported in part by grants DK063665, DK066020, DK075566 from the NIH to Brian C-S Liu. Additional funding was supported by the Interstitial Cystitis Association and the Fishbein Family Foundation. Robert J Caiazzo Jr serves as a consultant for Inanovate, Inc. Brian C-S Liu serves on the Board of Scientific Advisors for Inanovate, Inc. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.