749
Views
66
CrossRef citations to date
0
Altmetric
Special Focus Issue: Influenza Vaccines - Review

Influenza virus-like particle vaccines

Pages 435-445 | Published online: 09 Jan 2014
 

Abstract

Enveloped virus-like particle (VLP) vaccines containing influenza hemagglutinin (HA) and neuraminidase (NA) antigens are produced easily in insect or mammalian cells via the simultaneous expression of HA and NA along with a viral core protein, such as influenza matrix (M1) or a retroviral Gag protein. The size and shape of the resulting particles are dictated by the choice of the core component, but M1- and Gag-based VLPs are strongly immunogenic and protective in seasonal and highly pathogenic influenza challenge models. Current data are consistent with the hypothesis that influenza VLP vaccine efficacy is related to the particulate, multivalent composition coupled with the presence of correctly folded antigens with intact biological activities. This new influenza vaccine paradigm offers potential advantages over the conventional egg-based, split-vaccine platform in terms of enhanced immunogenicity and better breadth of protection.

Financial & competing interests disclosure

Joel Haynes is a fulltime, salaried employee of LigoCyte Pharmaceuticals, Inc. and is the recipient of stock option grants. The author has no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.