75
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Systemic effects of chronic obstructive pulmonary disease in young-old adults’ life-space mobility

, , , &
Pages 2777-2785 | Published online: 27 Sep 2017

Abstract

Purpose

The objective was to assess whether dyspnea, peripheral muscle strength and the level of physical activity are correlated with life-space mobility of older adults with COPD.

Patients and methods

Sixty patients over 60 years of age (40 in the COPD group and 20 in the control group) were included. All patients were evaluated for lung function (spirometry), life-space mobility (University of Alabama at Birmingham Study of Aging Life-Space Assessment), dyspnea severity (Modified Dyspnea Index), peripheral muscle strength (handgrip dynamometer), level of physical activity and number of daily steps (accelerometry). Groups were compared using unpaired t-test. Pearson’s correlation was used to test the association between variables.

Results

Life-space mobility (60.41±16.93 vs 71.07±16.28 points), dyspnea (8 [7–9] vs 11 [10–11] points), peripheral muscle strength (75.16±14.89 vs 75.50±15.13 mmHg), number of daily steps (4,865.4±2,193.3 vs 6,146.8±2,376.4 steps), and time spent in moderate to vigorous activity (197.27±146.47 vs 280.05±168.95 minutes) were lower among COPD group compared to control group (p<0.05). The difference was associated with the lower mobility of COPD group in the neighborhood.

Conclusion

Life-space mobility is decreased in young-old adults with COPD, especially at the neighborhood level. This impairment is associated to higher dyspnea, peripheral muscle weakness and the reduced level of physical activity.

Introduction

COPD is the fourth leading cause of death worldwide and impairs the respiratory, musculoskeletal and psychological systems as well as social skills.Citation1,Citation2 These disorders are associated with functional disability and low health-related quality of life.Citation1 Progressive functional disability is commonly observed in older adultsCitation3 and leads to the need for help to carry out the activities of daily living (ADL).Citation4 This functional dependence can occur early in older adults with COPD due to dyspnea, sarcopenia and low level of physical activity often related to the respiratory disorder.Citation5

Mobility is highly related to health state, autonomy, independence, quality of life and need for care, especially among older adults. These factors must be considered in the evaluation of the older population to develop strategies for prevention and treatment of health problems.Citation6 Life-space mobility refers precisely to the capacity, frequency and independence with which individual moves within the house, around the neighborhood and in other cities.Citation7 Mobility can be affected by environmental, cognitive and physical factors, and the loss of life-space mobility among older adults appears to lead to worse quality of life,Citation8 social isolation,Citation9 symptoms of depressionCitation10 and, possibly, physical inactivity. The association between chronic diseases and limited life-space mobility has been demonstrated among older patients with kidney disease,Citation11 fecal incontinenceCitation12 and stroke sequelae,Citation13 but it has never been evaluated in the case of older patients with chronic respiratory diseases.

Physical inactivity is an important predictor of mortality in healthy older adults and also in patients with chronic diseases.Citation14,Citation15 Most COPD patients do not follow the current minimum recommendations for physical activity and have lower level of physical activity than healthy individuals.Citation16,Citation17 Daily symptoms such as dyspnea and fatigueCitation17 as well as environmental and sociodemographic factors,Citation18 exacerbationsCitation19 and comorbiditiesCitation20 influence the low levels of physical activity among these patients. The level of physical activity in COPD individuals can be evaluated through questionnaires.Citation21 Questionnaires are low cost and easy to apply. They are generally used in epidemiological studies and large clinical trials.Citation21 A variety of questionnaires have been designed to obtain data on different aspects of daily physical activity, including its intensity, type, quantity and limitations to perform ADL.Citation21 Another way to assess the level of physical activity is the application of motion sensors,Citation22 such as accelerometers. These provide more accurate, individualized and detailed information about body movements than questionnaires.Citation21 However, accelerometers have some disadvantages; accelerometers are high cost needing technical expertise to manipulate and a “software” to analyze the obtained data.Citation21 Furthermore, a general concern about motion sensors is the collaboration of the evaluated individual. For example, such individual should remember to put on and properly place the device.Citation23

Low levels of physical activity in COPD older adults are related to higher risk of hospital readmissionCitation24 and lower survival.Citation25 Thus, given the close relationship between the levels of physical activity and health, their assessment is very important.Citation26 Considering that reduced life-space mobility can affect the older adults’ quality of life and level of independence more directly than physical inactivity, understanding the impact of COPD and the existence of any relationship between modifiable factors in the level of life-space mobility is necessary. The aim of this study was to assess whether dyspnea and peripheral muscle strength affect life-space mobility and the level of physical activity of older adults with COPD.

Patients and methods

Participants

This controlled cross-sectional study was conducted at Pneumology Service, Conjunto Hospitalar do Mandaqui, Brazil. Approval for the study was obtained from the Ethics Committee of the Universidade Cidade de São Paulo (CAAE: 29380314.0.0000.0064) and the Ethics Committee of the Conjunto Hospitalar do Mandaqui (CAAE: 29380314.0.3001.5551), and all patients signed an informed consent form. Forty COPD patients out of 90 selected individuals were included in the respiratory diseases outpatient clinic. Other 20 healthy patients with corresponding age (control group) were included, in accordance with the calculated sample size, considering an expected effect size of 0.8, 80% of power and alpha of 5%, with allocation of 2:1. All eligible participants were older adults over 60 years of age, according to the United Nations definition for older persons from developing countries,Citation27Citation29 had no musculoskeletal or cognitive limitations that could interfere in the assessments and had not participated in regular physical activity in the last 6 months. The inclusion criteria for the COPD group were: monitoring in the Pulmonology Outpatient Clinic of the Conjunto Hospitalar do Mandaqui for at least 6 months, forced expiratory volume in the first second/forced vital capacity (FEV1/FVC) <70% predicted after bronchodilatorCitation1 and absence of heart disease or any other non-pulmonary cause of respiratory symptoms certified by the doctor. Inclusion criteria for the control group were: absence of respiratory symptoms or medical diagnosis of any chronic pulmonary disease, no history of smoking and lack of spirometric changes. Exclusion criteria for both groups were: inability to complete all assessments, use of accelerometer for less than 3 consecutive daysCitation30 and modification of the clinical condition (hospitalization, emergency room visit or use of new medication) during the evaluation period.

Procedures

Patients included in the study and allocated in the COPD and control groups received detailed explanations on how to perform each procedure. After this, they were evaluated for clinical and anthropometric history, lung function, life-space mobility, dyspnea severity and peripheral muscle strength. After all assessments, which took 30 minutes on average, an accelerometer was fixed to the waist of the patient and removed after 1 week.

Measurements

Clinical and anthropometric measurements

Height and weight were measured according to National Institute of Health, Heart, Lung and Blood guidelines.Citation31 Information on other diseases, smoking, alcohol consumption, respiratory symptoms (cough, expectoration, wheezing and dyspnea) and the presence of COPD was requested from the patients.Citation1 COPD severity was defined according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017 guidelines.Citation1

Pulmonary function

Simple spirometry was performed according to the American Thoracic Society/European Respiratory Society consensus criteria.Citation32 FEV1, FVC and forced expiratory flow at the moment between 25% and 75% of the curve (FEF25%–75%) were analyzed in absolute values and in the reference values previously described for the Brazilian population.Citation33

Life-space mobility

The University of Alabama at Birmingham Study of Aging Life-Space AssessmentCitation7,Citation34 questionnaire, culturally adapted to the Brazilian population, was used. This questionnaire consists of questions on five levels of spaces visited by the older adult in the 4 weeks prior to the assessment, including the following items: life-space level (sleeping room, internal housing area, external housing area, neighborhood, within the city and other cities), frequency (less than 1 time per week, 1–3 times a week, 4–6 times a week or daily) and independence (personal assistance, equipment assistance, without assistance) (Table S1).Citation6,Citation7 The score ranges from 0 to 120 and is obtained by combining the scores in each life-space level. Higher scores indicate greater life-space mobility.Citation7

Severity of dyspnea

The “Modified Dyspnea Index” (MDI) questionnaire adapted to Brazilian PortugueseCitation35 was used. The MDI is an instrument composed of three components: functional impairment, magnitude of the task and magnitude of the effort. The total score ranges from 0 to 12, as a result of the sum of scores (from zero to four) of each MDI component. The lower the score, the more severe the dyspnea.Citation35

Peripheral muscle strength

A “handgrip” dynamometer was used. The measurement was performed with the dominant hand of the evaluated individual, respecting the protocol recommended by the American Association of Hand Therapists.Citation36 The mean of the three measurements was usedCitation37 in its absolute value and in the reference value previously described for the Brazilian population.Citation38

The level of physical activity and the number of daily steps

The accelerometer was used for 24 hours on 7 consecutive days. Accelerometers were installed in the waist of the patient using elastic straps.Citation39 The collected values were adjusted for age, weight, height, gender and race. The mean of the values collected during 7 days of the following variables were analyzed: number of daily steps; percentage of daily time in sedentary, light, moderate and vigorous activity; and moderate-to-vigorous physical activity (MVPA).

Statistical analysis

After descriptive analysis and the Kolmogorov–Smirnov normality test, the groups were compared using the unpaired t-test or Mann–Whitney tests to observe the initial homogeneity of groups and test the primary objective. The Pearson correlation coefficient was used to test the relationship between mobility in the COPD group and dyspnea severity, peripheral muscle strength and physical activity level. We consider the correlation weak when r=0.10 to 0.29, moderate when r=0.30 to 0.49 and strong when r=0.50 to 1.Citation40 The level of significance was set at 5%.

Results

Demographic comparison and initial clinical situation

Out of the 90 eligible patients, sixty adults over 60 years of age were included in the study; 40 were in the COPD group (29 GOLD II, 10 GOLD III and 1 GOLD IV) and 20 in the control group. The other 30 eligible patients did not agree to participate in the study due to the need to use the accelerometer. The two groups were similar in gender, age, body mass index, comorbidities, alcohol consumption and number of retirees. The mean age of participants in both groups classifies them as young-old adults.Citation41 As expected, respiratory symptoms and spirometric variables were altered in the COPD group compared to the control group ().

Table 1 Demographic comparison and initial clinical situation of groups (n=60)

Mobility, dyspnea, peripheral strength and level of physical activity

Results of overall mobility, dyspnea severity, mean percentage of time spent in moderate-intensity activity, MVPA and number of daily steps were different between the groups (). The significant difference found in mobility between the groups showed statistical power of 83% with p<0.05.

Table 2 Comparison of mobility, dyspnea severity, peripheral muscle strength and level of physical activity between groups (n=60)

Life-space mobility

Groups differed only in the total score (p=0.02; test power =0.83) and in the score of life-space level 3 (p=0.03; test power =0.79), which refers to displacement to places in the neighborhood ().

Table 3 Scores of patients with and without COPD on each life-space level

Correlation between mobility and dyspnea, peripheral strength and accelerometry

Moderate and positive correlations were observed between mobility, assessed through the University of Alabama at Birmingham Study of Aging Life-Space Assessment questionnaire in COPD older adults, and the average percentage of time spent in moderate-intensity activity (r=0.40; p=0.01), number of daily steps (r=0.43; p=0.01), MVPA (r=0.43; p=0.01), dyspnea severity (r=0.44; p<0.001) and peripheral muscle strength (r=0.42; p<0.001) ().

Table 4 Correlation between mobility and dyspnea severity, peripheral muscle strength and accelerometry variables of the COPD group

Discussion

Our results showed that young-old adults with COPD had poor life-space mobility, especially to move within their neighborhood, when compared to young-old adults without lung disease. This impaired mobility is associated with dyspnea severity, peripheral muscle weakness and reduced physical activity level. The novelty of our study is the demonstration of the association between all these variables, as well as their impact on one aspect not explored before such as life-space mobility, using an appropriate tool for this population.

The lowest level of mobility found among COPD older adults was associated with lower number of daily steps and less time spent in moderate-to-vigorous physical activities compared to healthy young-old adults. The ability to move within the community has never been evaluated in this population, but the present results are consistent with previous studies showing lower level of physical activity in COPD patients than in healthy individuals of same age and gender.Citation16,Citation42 It is known that this aspect may be associated with poor prognosis of the COPDCitation43 and may cause adverse effects on these patients, particularly to their quality of life.Citation44 The loss of quality of life can be even greater if we consider that the lowest score obtained by the young-old adults was related to visiting places in the neighborhood. Possibly, this decreased independence is one of the barriers to engaging in social activities,Citation45 leading to a greater propensity to lonelinessCitation45 and difficulties to perform the ADL.Citation16 Therefore, supplementary programs to treatment of COPD, such as pulmonary rehabilitation, should pay special attention to life-space mobility because this aspect better reflects the real life of this population than other variables traditionally measured, such as the 6-minute walk test.Citation46 Furthermore, this would enhance other known benefits that aim to interfere in social interaction, depression and quality of life.Citation47

Although it is believed that COPD patients with moderate airway obstruction have few clinical consequences and, therefore, do not require rehabilitation, there is evidence that moderate airway obstruction is associated with reduced exercise capacity and level of physical activity in this population.Citation16 Structural abnormalities such as pulmonary air trapping, airway wall thickening, and vascular dysfunctionCitation48 contribute to increased ventilatory demand and compromise the ventilatory mechanics of patients with COPD.Citation49 Thus, patients often restrict some more intense activities to avoid unpleasant symptoms, such as dyspnea.Citation50 Over time, this can lead to a spiral of worsening symptoms, deconditioning and exercise intolerance as patients become progressively more sedentary.Citation50 In addition, cardiocirculatoryCitation51 and musculoskeletal impairmentsCitation52 have been reported in patients with mild to moderate COPD, as observed in the majority of young-old adults with COPD in our sample, which may also lead to reduced exercise capacity and ADL limitation.

Besides reflecting the level of physical activity and the ability to perform ADL, mobility was shown to be associated with dyspnea, which is considered the main symptom leading to limited exercise among COPD patients, often causing inactivity and deconditioning of peripheral muscles.Citation53 In another study, a strong association between limited ADL, as assessed through the London Chest Activity of Daily Living scale, and the degree of dyspnea, measured through the Medical Research Council scale, was observed.Citation54 Weakness of skeletal muscles in COPD patients can be attributed to isolated or combined effects of deconditioning induced by inactivity, systemic inflammation, oxidative stress, smoking, aging, low levels of anabolic hormones, nutritional impairment and use of corticosteroids.Citation47 According to our results, this weakness interferes with the ability to attend places in the neighborhood with independence. This interference has been reported in another study with COPD patients. The study showed that weakness of the quadriceps was associated with reduced level of daily physical activity.Citation55

Accelerometry provides accurate, individualized and detailed information on body movement, especially among individuals with typical slow gait, such as older adults with COPD.Citation14 Other authors who have used accelerometers to assess the level of physical activity among COPD patients have shown that the active time of these patients is correlated with the quadriceps strength.Citation56 Similar results were observed in our study; there was a slight correlation between life-space mobility, physical activity and peripheral muscle strength among young-old adults with COPD. Therefore, we believe that the evaluation of life-space mobility is appropriate to provide information not just on mobility but also on the level of physical activity of young-old adults with COPD.

Systemic effects of COPD such as dyspnea and fatigue can lead to decreased exercise tolerance, favoring a vicious cycle that results in generalized muscle weakness, sedentarism and physical inactivaty.Citation57 However, pulmonary rehabilitation programs can improve dyspnea, functional balance, muscle strength and exercise tolerance among COPD patients.Citation58 The University of Alabama at Birmingham Study of Aging Life-Space questionnaire showed good correlation with the accelerometer data in the present study. This shows that this questionnaire is an excellent tool to evaluate the benefits of pulmonary rehabilitation programs with regard to actual daily mobility instead of only considering the performance capacity of these patients. Furthermore, this questionnaire can be used in future studies with other populations because it is an easily applied and interpreted tool.

A limitation of this study was a low number of patients with severe and very severe COPD, which may have underestimated the results for life-space mobility limitation. This may have occurred because we collected data from an outpatient clinic, which naturally requires patients to get out of their homes; we hypothesize that patients with severe and very severe COPD had life-space mobility limited to a point that they were not able to attend this clinic and thus were the minority in our sample. Also, we recognize that our sample is younger than that expected for older adults with COPD, but this can be a characteristic of patients with COPD in Brazil, as observed in previous studies.Citation59,Citation60 Furthermore, patients were not questioned about the reasons that led them to not attend spaces, such as dyspnea, lack of motivation, architectural barriers, and financial conditions. This would allow the comparison of factors that influence decreased mobility among young-old adults with and without COPD. Another point should be the difference in the age of subjects considered elderly in our study and in the developed countries. The World Health Organization considers subjects over 60 years of age as elderly in developing countries, such as Brazil.Citation29 However, this population with worse conditions of health and education should be similar to subjects with 65 years from developed countries with the same disease severity. Therefore, our results may be generalizable to other countries. However, we believe that addressing this aspect would be important in future studies.

Conclusion

In conclusion, the results showed that life-space mobility is reduced in young-old adults with COPD when compared to older adults without lung illness, especially in relation to displacement within the neighborhood. We also observed that reduced life-space mobility is related to dyspnea severity, peripheral muscle weakness and reduced physical activity assessed by accelerometry.

Author contributions

IFFG, CTT, MdSMPS, ISL and ACL contributed to the concept and design of this study and undertook data analysis and interpretation. All authors contributed toward drafting and critically revising the paper and agree to be accountable for all aspects of the work.

Acknowledgments

We thank the participants of this study. This project was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (grant numbers 2012/16817-3 and 2015/12614-9). The funding source had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, and approval of the manuscript.

Supplementary materials

Table S1 UAB Study of Aging Life-Space Assessment™

Reference

Disclosure

The authors report no conflicts of interest in this work.

References

  • Global Initiative for Chronic Obstructive Lung Disease (GOLD): global strategy for the diagnosis, management and prevention of COPD [webpage on the Internet] Available from: www.goldcopd.orgAccessed April 30, 2017
  • Borges-SantosEWadaJTda SilvaCMSilvaRAAnxiety and depression are related to dyspnea and clinical control but not with thoracoabdominal mechanics in patients with COPDRespir Physiol Neurobiol20152101625620656
  • Cólon-EmericCSWhitsonHEPavonJHoenigHFunctional decline in older adultsAm Fam Physician201388638839424134046
  • KanervistoMSaarelainenSVasankariTCOPD, chronic bronchitis and capacity for day-to-day activities: negative impact of illness on health-related quality of lifeChron Respir Dis20107420721521084545
  • JoppaPTkacovaRFranssenFMSarcopenic obesity, functional outcomes, and systemic inflammation in patients with chronic obstructive pulmonary diseaseJ Am Med Dir Assoc201617871271827161848
  • AllmanRNSawyerPRosemanJMThe UAB study of aging: background and insights into life-space mobility among older Americans in rural and urban settingsAging Health200623417429
  • PeelCSawyer BakerPRothDLAssessing mobility in older adults: the UAB Study of Aging Life-Space AssessmentPhys Ther200585101008111916180950
  • MakhijaSKGilbertGHLitakerMSAssociation between aspects of oral health-related quality of life and body mass index in community-dwelling older adultsJ Am Geriatr Soc200755111808181617727644
  • LocherJLRitchieCSRothDLBakerPSBodnerEVAllmanRMSocial isolation, support, and capital and nutritional risk in an older sample: ethnic and gender differencesSoc Sci Med200560474776115571893
  • PolkuHMikkolaTMPortegijsELife-space mobility and dimensions of depressive symptoms among community-dwelling older adultsAging Ment Health201519978178925376479
  • BowlingCBMuntnerPSawyerPCommunity mobility among older adults with reduced kidney function: a study of life-spaceAm J Kidney Dis201463342943624074823
  • GoodePSBurgioKLHalliADPrevalence and correlates of fecal incontinence in community-dwelling older adultsJ Am Geriatr Soc200553462963515817009
  • Oh-ParkMHungCChenPBarrettAMSeverity of spatial neglect during acute inpatient rehabilitation predicts community mobility after strokePMR201468716722
  • ManiniTMEverhartJEPatelKVDaily activity energy expenditure and mortality among older adultsJAMA2006296217117916835422
  • HamerMStamatakisEPhysical activity and mortality in men and women with diagnosed cardiovascular diseaseEur J Cardiovasc Prev Rehabil200916215616019276984
  • TroostersTSciurbaFBattagliaSPhysical inactivity in patients with COPD, a controlled multi-center pilot-studyRespir Med20101041005101120167463
  • WaschkiBSpruitMAWatzHPhysical activity monitoring in COPD: compliance and associations with clinical characteristics in a multicenter studyRespir Med2012106452253022118987
  • AlahmariADMackayAJPatelARCInfluence of weather and atmospheric pollution on physical activity in patients with COPDRespir Res2015167126071400
  • AlahmariADPatelARCKowlessarBSDaily activity during stability and exacerbation of chronic obstructive pulmonary diseaseBMC Pulm Med2014149824885188
  • Nussbaumer-OchsnerYRabeKFSystemic manifestations of COPDChest2011139116517321208876
  • PittaFTroostersTProbstVSSpruitMADecramerMGosselinkRQuantifying physical activity in daily life with questionnaires and motion sensors in COPDEur Respir J20062751040105516707399
  • WatzHWaschkiBMeyerTMagnussenHPhysical activity in patients with COPDEur Respir J200933226227219010994
  • KochersbergerGMcConnellEKuchibhatlaMNPieperCThe reliability, validity, and stability of a measure of physical activity in the elderlyArch Phys Med Rehabil19967787937958702373
  • Garcia-AymerichJFarreroEFelezMAIzquierdoJMarradesRMAntoJMRisk factors of readmission to hospital for a COPD exacerbation: a prospective studyThorax200358210010512554887
  • YohannesAMBaldwinRCConnollyMMortality predictors in disabling chronic obstructive pulmonary disease in old ageAge Ageing200231213714011937477
  • MontoyeHJIntroduction: evaluation of some measurements of physical activity and energy expenditureMed Sci Sports Exerc200032Suppl 9S439S44110993412
  • NationsUGuidelines for Review and Appraisal of the Madrid International Plan of Action on Ageing – Bottom-up Participatory ApproachNew YorkUnited Nations200696
  • NationsUGuide to the National Implementation of the Madrid International Plan of Action on AgeingNew YorkUnited Nations2008161
  • NationsUCurrent Status of the Social Situation, Well-being, Participation in Development and Rights of Older Persons WorldwideNew YorkUnited Nations201199
  • PlasquiGBonomiAGWesterterpKRDaily physical activity assessment with accelerometers: new insights and validation studiesObes Rev201314645146223398786
  • National Institutes of Health (US)Clinical Guidelines on the Identification, Evaluation and Treatment of Overweight and Obesity in AdultsBethesdaNational Heart, Lung and Blood Institute1998
  • MillerMRHankinsonJBrusascoVStandardisation of spirometryEur Respir J200526231933816055882
  • PereiraCACEspirometria – Diretrizes para Testes de Função PulmonarJ Bras Pneumol200228Suppl 3S1S82
  • CurcioCLAlvaradoBEGomezFGuerraRGuralnikJZunzuneguiMVLife-Space Assessment scale to assess mobility: validation in Latin American older women and menAging Clin Exp Res201325555356023949973
  • MiuraCTPGallaniMCBJDominguesGBLRodriguesRCMStollerJKAdaptação cultural e análise da confiabilidade do instrumento Modified Dyspnea Index para a cultura brasileiraRev Latinoam Enferm201018510201030
  • FessEEGrip strengthCasanovaJSClinical Assessment RecommendationsChicago (IL)American Society of Hand Therapists19924145
  • IshigakiEYRamosLGCarvalhoESLunardiACEffectiveness of muscle strengthening and description of protocols for preventing falls in the elderly: a systematic reviewBraz J Phys Ther201418211111824760166
  • NovaesRDMirandaASSilvaJOTavaresBVFDouradoVZEquações de referência para a predição da força de preensão manual em brasileiros de meia idade e idososFisioter Pesqui2009163217222
  • CheungVHGrayLKarunanithiMReview of accelerometry for determining daily activity among elderly patientsArch Phys Med Rehabil2011926998101421621676
  • MokkinkLBPrinsenCABouterLMVetHCTerweeCBThe COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) and how to select an outcome measurement instrumentBraz J Phys Ther201620210511326786084
  • ZizzaCAEllisonKJWernetteCMTotal water intakes of community-living middle-old and oldest-old adultsJ Gerontol A Biol Sci Med Sci200964448148619213852
  • PittaFTroostersTSpruitMAProbstVSDecramerMGosselinkRCharacteristics of physical activities in daily life in chronic obstructive pulmonary diseaseAm J Respir Crit Care Med200517197297715665324
  • Garcia-AymerichJLangePSerraISchnohrPAntóJMTime-dependent confounding in the study of the effects of regular physical activity in chronic obstructive pulmonary disease: an application of the marginal structural modelAnn Epidemiol20081877578318708291
  • BrownDWPleasentsROharJAHealth-related quality of life chronic obstructive pulmonary disease in North CarolinaN Am J Med Sci201022606522624116
  • LiuYCroftJBAndersonLAWheatonAGPresley-CantrellLRFordESThe association of chronic obstructive pulmonary disease, disability, engagement in social activities, and mortality among US adults aged 70 years or older, 1994–2006Int J Chron Obstruct Pulmon Dis20141597583
  • LacasseYGoldsteinRLassersonTJMartinSPulmonary rehabilitation for chronic obstructive pulmonary diseaseCochrane Database Syst Rev2006184CD003793
  • SpruitMASinghSJGarveyCAn official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitationAm J Respir Crit Care Med20131888e13e6424127811
  • GuenetteJAJensenDWebbKAOfirDRaghavanNO’DonnellDESex differences in exertional dyspnea in patients with mild COPD: physiological mechanismsRespir Physiol Neurobiol2011177321822721524719
  • ChinRCGuenetteJAChengSDoes the respiratory system limit exercise in mild chronic obstructive pulmonary disease?Am J Respir Crit Care Med2013187121315132323590271
  • ZuWallackRHow are you doing? What are you doing? Differing perspectives in the assessment of individuals with COPDCOPD20074329329717729076
  • GrauMBarrRGLimaJAPercent emphysema and right ventricular structure and function: the Multi-Ethnic Study of Atherosclerosis-Lung and Multi-Ethnic Study of Atherosclerosis-Right Ventricle StudiesChest2013144113614423450302
  • van den BorstBSlotIGHellwigVALoss of quadriceps muscle oxidative phenotype and decreased endurance in patients with mild-to-moderate COPDJ Appl Physiol20131141319132822815389
  • O’DonnellDEHyperinflation, dyspnea, and exercise intolerance in chronic obstructive pulmonary diseaseProc Am Thorac Soc20063218018416565429
  • SimonKMCarpesMFCorrêaKSSantosKKarlohMMayerAFRelationship between daily living activities (ADL) limitation and the BODE index in patients with chronic obstructive pulmonary diseaseRev Bras Fisioter201115321221821829985
  • ShrikrishnaDPatelMTannerRJQuadriceps wasting and physical inactivity in patients with COPDEur Respir J20124051115112222362854
  • PittaFTroostersTProbstVSSpruitMADecramerMGosselinkRPhysical activity and hospitalization for exacerbation of COPDChest2006129353654416537849
  • BarnesPJCelliBRSystemic manifestations and comorbidities of COPDEur Respir J20093351165118519407051
  • JácomeCMarquesAImpact of pulmonar rehabilitation in subjects with mild COPDRespir Care201459101577158224803497
  • MoreiraGLManzanoBMGazzottiMRPLATINO, a nine-year follow-up study of COPD in the city of São Paulo, Brazil: the problem of underdiagnosisJ Bras Pneumol2014401303724626267
  • MenezesAMBJardimJRPerez-PadillaRPrevalence of chronic obstructive pulmonary disease and associated factors: the PLATINO study in São Paulo, BrazilCad Saúde Pública20052151565157316158163