0
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Effects of SU5416 and a vascular endothelial growth factor neutralizing antibody on wear debris-induced inflammatory osteolysis in a mouse model

, , , , &
Pages 29-38 | Published online: 02 Mar 2011
 

Abstract

Background

The development of highly vascularized and inflammatory periprosthetic tissue characterizes the progress of aseptic loosening, a major complication of joint arthroplasty. Vascular endothelial growth factor (VEGF) is an important cell signaling protein involved in angiogenesis. The purpose of this study was to investigate whether R2/Fc (a VEGF neutralizing antibody) and SU5416 (a VEGF receptor II [Flk-1] inhibitor) could ameliorate particle-induced inflammatory osteolysis in a mouse model.

Methods

Ultrahigh molecular weight polyethylene (UHMWPE) particles were introduced into established air pouches in BALB/c mice, followed by implantation of calvaria bone from syngeneic littermates. Drug treatment was started 2 weeks after bone implantation, and mice without drug treatment were included as controls. Pouch tissues were harvested 4 weeks after bone implantation for molecular and histological analysis, and implanted bone degradation was analyzed by microcomputed tomography.

Results

Exposure to UHMWPE particles induced inflammatory osteolysis, which was associated with increased expression of VEGF/Flt-1 proteins. Treatment with R2/Fc significantly improved UHMWPE particle-induced inflammatory osteolysis, and reduced the expression of VEGF/Flt-1 proteins. However, SU5416 treatment showed no effect on UHMWPE particle-induced inflammatory osteolysis.

Conclusion

Our findings indicate that VEGF signaling exerts a regulatory effect on the development of UHMWPE-induced inflammatory osteolysis, through its unique Flt-1, rather than Flk-1, receptor located on monocyte/macrophage cell lineages. These data provide a biological rationale for a VEGF/Flt-1-targeted treatment strategy, especially during the early stages of the wear debris-induced inflammatory response.

Acknowledgments

This study was supported by Stryker Company and the Department of Biomedical Engineering Fund for Medical Research and Education.

Disclosure

The authors report no conflicts of interest in this work.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.