101
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Clinical predictors of central sleep apnea evoked by positive airway pressure titration

, , , , &
Pages 259-266 | Published online: 27 Jul 2016

Abstract

Purpose

Treatment-emergent central sleep apnea (TECSA), also called complex apnea, occurs in 5%–15% of sleep apnea patients during positive airway pressure (PAP) therapy, but the clinical predictors are not well understood. The goal of this study was to explore possible predictors in a clinical sleep laboratory cohort, which may highlight those at risk during clinical management.

Methods

We retrospectively analyzed 728 patients who underwent PAP titration (n=422 split-night; n=306 two-night). Demographics and self-reported medical comorbidities, medications, and behaviors as well as standard physiological parameters from the polysomnography (PSG) data were analyzed. We used regression analysis to assess predictors of binary presence or absence of central apnea index (CAI) ≥5 during split-night PSG (SN-PSG) versus full-night PSG (FN-PSG) titrations.

Results

CAI ≥5 was present in 24.2% of SN-PSG and 11.4% of FN-PSG patients during titration. Male sex, maximum continuous positive airway pressure, and use of bilevel positive airway pressure were predictors of TECSA, and rapid eye movement dominance was a negative predictor, for both SN-PSG and FN-PSG patients. Self-reported narcotics were a positive predictor of TECSA, and the time spent in stage N2 sleep was a negative predictor only for SN-PSG patients. Self-reported history of stroke and the CAI during the diagnostic recording predicted TECSA only for FN-PSG patients.

Conclusion

Clinical predictors of treatment-evoked central apnea spanned demographic, medical history, sleep physiology, and titration factors. Improved predictive models may be increasingly important as diagnostic and therapeutic modalities move away from the laboratory setting, even as PSG remains the gold standard for characterizing primary central apnea and TECSA.

Introduction

Treatment-emergent central sleep apnea (TECSA), also known as complex apnea or “CompSA”, is a recognized cause of therapeutic failure occurring in a subset of patients with obstructive sleep apnea (OSA). The prevalence of TECSA has been reported in the range of 1.6%–20% in continuous positive airway pressure (CPAP)-treated OSA patients.Citation1 The natural history of TECSA remains uncertain, although a recent randomized trial of CPAP versus adaptive servoventilation suggested that it may resolve spontaneously in about half the PAP-treated patients,Citation2 consistent with prior retrospective and prospective studies.Citation2Citation5 In addition to mechanistic questions as to the basis of TECSA, the utility of clinical predictors may influence utilization decisions regarding diagnostic and therapeutic strategies in certain patients. TECSA is important to recognize, because if it persists in standard PAP therapy, then alternative treatments should be sought.Citation6 Before therapy is initiated, risk factors predicting TECSA could be used to stratify those who warrant closer evaluation or in-lab assessments, such as demographic or clinical information. Some clues may surface after the start of PAP therapy, such as elevated apnea–hypopnea index (AHI) detected by the PAP machine, or symptoms of air hunger or inadvertent mask removal,Citation7 although overall adherence may be similar in people with versus those without TECSA.Citation4 Several potential mechanisms may underlie central apnea pathophysiology, such as relative hypocarbia compared to the apnea threshold and relatively high loop gain,Citation8 with a potential impact on clinical history, medications, and titration.Citation1,Citation9,Citation10 During titration, rapid or excessively high titration, excessive mask leak, and use of bilevel positive airway pressure (BiPAP) may be contributors. These titration factors may result in reduced carbon dioxide and thus trigger central events. Male sex,Citation7,Citation11Citation13 older age,Citation14 narcotic use,Citation3 severity of OSA,Citation3,Citation11,Citation12 non-rapid eye movement (NREM) dominance,Citation11,Citation15 central apnea pre-PAP,Citation3,Citation7,Citation12,Citation14,Citation15 use of BiPAP,Citation16 increased nasal resistance,Citation17 cardiac history (especially atrial fibrillation heart failure),Citation12,Citation18 and strokeCitation19 have been linked to central sleep apnea and/or TECSA, but the literature has not been consistent in that different studies do not always identify the same risk factors, and many studies excluded groups with potentially important risk factors (eg, heart failure and opiates). Other work suggests that untreated OSA alters chemosensitivityCitation20 and that sensitivity is restored by PAP therapy,Citation21 which in susceptible individuals might lead to transient vulnerability to central apnea.

Identifying TECSA typically requires laboratory polysomnography (PSG), as home sleep testing kits are not validated for detection of central apnea during diagnostic testing.Citation22 With increasing pressure toward home testing and auto-PAP approaches, it is possible that clinical clues could help risk-stratify patients for the potential for TECSA. To this end, we analyzed a large retrospective cohort of two-night PSG and split-night PSG (SN-PSG) to explore predictors of central apnea index (CAI) ≥5 based on three categories of clinical information: demographics and clinical information available before PSG; baseline sleep physiology that is observed during diagnostic PSG recordings; and factors associated with the PAP titration portion of PSG recordings. This approach adds to existing retrospective literature on risk factors, benefiting from diverse clinical populations and allowing large cohorts to be analyzed with fewer resources compared to prospective endeavors. Moreover, for any risk factor prediction assessment, it is important to recognize the limitations where, for example, the factors explain only a subset of the risk. This is important in light of increasing pressure to defer testing and treatment to the home, where no gold standard TECSA determination exists.

Methods

We performed a retrospective analysis on a cohort of patients who underwent SN-PSG (n=422) or full-night PSG (FN-PSG; n=306) testing in our clinical sleep laboratory. TECSA was defined as a CAI ≥5 during PAP titration (“Rx-CAI”). The International Classification of Sleep Disorders-Third edition uses the term treatment-emergent central apnea and defines it as CAI >5 and also lists central events comprising >50% of events;Citation23 we did not impose the latter criteria in our definition here. FN-PSG patients had their diagnostic PSG on one night and PAP titration on a different night (<1 year apart, median of 3 months). PSGs were conducted and scored according to the American Academy of Sleep Medicine criteria for diagnostic and titration protocols;Citation24 reasons to switch to BiPAP include patient comfort, high CPAP (usually 15 or more), or persistent hypoxemia despite the control of sleep-disordered breathing. We used the 4% rule for hypopneas; however, central hypopneas were not scored. Split-night protocol in our laboratory generally utilizes thresholds of 20 or 40 events per hour to trigger PAP trial, and thus, the SN-PSG data generally involved more moderate or severe OSA cases. We included both diagnostic PSG cases who returned for a second night (titration) as well as split-night studies, so as not to enrich the dataset for any particular severity (split nights tend to be more severe). The Partners Healthcare Institutional Review Board approved retrospective analysis of this database without requiring consent.

We divided the available information into three categories depending on when the information was available. Information available prior to the PSG night included demographics, self-reported medications, and comorbidities; we call this “pre-info”. Self-reporting included free text for medications, and check boxes for common comorbidities as well as free text option, which was manually assessed. Information obtained during the diagnostic PSG recording (“Dx-info”) included standard scoring of sleep stages, movements, and respiratory parameters. Finally, information obtained during the titration (“Rx-info”) included whether a benzodiazepine was taken on the night of PSG, mask type (full-face mask or nasal mask) used, maximal CPAP observed, whether BiPAP was used. The treatment CAI was taken as the outcome measure (dichotomized using a threshold of ≥5 as positive).

The PSG database is stored internally via the acquisition system (Grass Technologies, Knocksquire, Co. Carlow, Ireland), which is distinct from the hospital electronic medical record system. The presleep surveys are Word documents, the fields of which are batch-extracted by custom internal software. We used Statistica for all analyses, and significance was taken as a P-value of <0.05. Spearman correlations were performed because of the predominantly nonnormal distribution characteristics. Chi-square test was used for categorical variable comparisons. Logistic regression analyses using backward elimination steps, beginning with correlated factors identified in the initial correlation analysis, were implemented to identify significant clinical predictors for TECSA at each stage of information. Significant predictors were shown if 95% confidence intervals of their respective odds ratios did not include 1.0.

Results

We present our analysis of potential predictors of TECSA (titration CAI ≥5) according to three categories that represent when the predictors would be knowable: demographic and clinical information available before the titration (Pre-info; ), diagnostic PSG physiology that would be available only after PSG is undertaken (Dx-info; ), and titration PSG factors that become available in real-time during therapy (Rx-info; ).

Table 1 Demographics and clinical history

Table 2 Diagnostic PSG metrics

Table 3 Titration metrics

The occurrence of CAI ≥5 during PAP titration was higher in SN-PSG patients than in FN-PSG patients (24.4% versus 11.4%; P<0.05). The SN-PSG group had higher body mass index and higher frequency of hypertension than the FN-PSG group (). The SN-PSG group had lower total sleep time and higher AHI, as expected due to the nature of SN-PSG protocols (). During the titrations, the SN-PSG group had a higher frequency of full-face mask, higher maximum CPAP, and more likely BiPAP use, than FN-PSG group ().

We used logistic regression to determine significant predictors of categorical CAI ≥5 (). From the demographic and clinical information category, male sex was a significant predictor for both groups. Self-reported narcotic use was a significant predictor for the SN-PSG group only, while self-reported stroke history was a significant predictor for the FN-PSG group only.

Table 4 Logistic regression models and odds ratios

From the diagnostic PSG metrics, we observed that rapid eye movement (REM) dominance of OSA was a significant negative predictor of RxCAI ≥5 for both groups in the regression models (). Time spent in N2 sleep was also a significant negative predictor for SN-PSG only. The presence of baseline central apnea during the diagnostic recordings was a significant predictor for the FN-PSG group only. From the titration, PSG metrics, the maximum CPAP, and the categorical use of BiPAP were significant predictors of CAI ≥5 in the models. Individual correlations are given in .

Discussion

This retrospective study revealed that a substantial subset of patients undergoing PAP titration demonstrated TECSA defined by CAI ≥5 during full-night and split-night treatment pathways. Several predictors and contributors were identified, which are discernible at three different stages of patient flow through clinical care: clinical and demographic information that is available prior to PSG; sleep physiology that is observable during diagnostic recordings; and factors occurring during titration of PAP. The results suggest that multiple factors contribute to TECSA, each contributing a subset of the risk, the timing of which suggests different stages of prediction, recognition, and reaction to TECSA.

As discussed later, if at-home diagnostic and auto-PAP treatment pathways are solely utilized, then only the clinical and demographic factors (among those we identified herein) be available to the clinician. The literature, however, has not been consistent in regard to clinical predictors (). Different studies identified factors such as older age, male sex, or cardiac disease, while other studies did not find these factors predictive. For example, Dernaika et alCitation25 also failed to identify demographic or diagnostic physiology predictors of central sleep apnea, although in this study, patients were excluded if they had congestive heart failure, major comorbidities, or had central apnea observed during diagnostic testing. Among prospective studies of TECSA resolution, a recent randomized trial failed to identify clinical predictors of incomplete response to CPAP, with the exception of higher oxygen saturation during diagnostic testing.Citation2 Whether this observation was a surrogate for NREM dominance, for example, if REM-dominant phenotype generally results in more prominent hypoxia, remains uncertain. In our cohort, a REM-dominant phenotype during the diagnostic phase was negatively related to TECSA. There may be several reasons for this, including elevated carbon dioxide (CO2) and decreased chemosensitivity during REM.Citation9 The observation that time spent in stage N2 was a negative predictor of TECSA warrants further investigation. For example, additional subclassification of NREM sleep by cyclic alternating pattern or cardiopulmonary coupling may prove informative.Citation26 To the extent that CO2 dynamics contribute to TECSA, it was not unexpected that high CPAP or the use of BiPAP was predictive of elevated CAI, although this is not systematically seen in prior work (). High pressures may also cause arousals, or be associated with increased leak,Citation27 which might also contribute to TECSA. Of note, we did not find a significant relation with the type of mask (nasal or full-face).

Table 5 Risk factor studies of central apnea and TECSA

We found a link between male sex and TECSA, but did not identify correlations with self-reported cardiac disease (coronary artery disease, congestive heart failure, or atrial fibrillation) and TECSA. Lehman et alCitation12 reported that TECSA was associated with male sex and cardiac history, as well as severity of OSA based on AHI (which itself is a marker of NREM dominanceCitation28). The link between central sleep apnea and atrial fibrillation has been reported elsewhere as well.Citation18 Other literature has focused on central apnea in cardiac patients, including the natural history and relation to cardiac function.Citation8,Citation29,Citation30 The potential reasons for the difference between our work and prior work regarding cardiac history and stroke include that comorbidity was identified by self-report and that variation in disease severity was not captured.

Beyond the (likely bidirectional) association of sleep apnea and stroke, several reports suggest that central apnea and/or TECSA is more likely poststroke.Citation19,Citation31 Studies in this area have not consistently linked sleep apnea to stroke location, and teasing apart relationships with stroke itself, versus with clinical factors that may present risk for both stroke and apnea (and TECSA in particular), make mechanistic associations challenging. Our finding of relationship with self-reported stroke supports this prior work, although details such as location, severity, recovery, and proximity to PSG may each contribute to variance in this association.

Narcotic use has been linked to both obstructive and central apnea,Citation32 and clinical trials of adaptive PAP therapy have targeted this population.Citation33,Citation34 The mechanism behind this may be due to respiratory depression or due to altered chemosensitivity of ventilator drive.Citation9 In our cohort, self-reported narcotic use was a predictor of TECSA. It is likely that further subclassification of use (dosing regimen and chronicity), as well as the extent to which pain itself leads to arousals that alter nocturnal respiratory stability, could further clarify the role of this important predictor.

Practice implications

Recognizing TECSA is important for the subset in which it persists, as alternative treatments should be pursued in such patients. With increasing pressure to perform home testing to diagnose sleep apnea, and home autotitration for therapy, only pre-PSG factors (ie, demographics and clinical history) are available before testing/therapy begins. Current home diagnostic kits are not validated for central apnea, which might predict TECSA in some cases (); in fact, most limited channel devices were validated in populations that specifically excluded central apnea.Citation22 When therapy is initiated with auto-PAP machines, the capacity to distinguish central from obstructive events remains uncertain (though most machines purport to have this capacity), and recent work raises concerns about event detection itself by machine algorithms when compared to human scoring of raw flow data.Citation35 For this reason, central apnea is considered an exclusion to auto-PAP,Citation36 although its detection by home diagnostic kits is not validated, and thus, the practitioner is left to use other clues to identify the subset that may have persistent TECSA. After therapy starts, symptom reporting may provide such clues, including air hunger and inadvertent mask removal.Citation7 It is possible that improvements in the technology used for home diagnostics and home titrations will increase the recognition of central apnea and TECSA. Having a predictive model to risk-stratify patients for TECSA may help with diagnostic and titration decision making, with the caveat that prospective validation of such models is lacking and it is likely that only a portion of the variance in TECSA will be explained. Our study identified more factors than the prior literature, likely because of the much larger sample size. The differences between factors identified for full-night versus split-night titrations may relate either to titration dynamics (such as rate of increase pressure) or to underlying physiology (more severe cases in split-night group). Combining clinical clues, including machine data downloads, with some adjunctive monitoring methods may prove useful in those treated with PAP who have not undergone laboratory titration. For example, single-lead electrocardiogram analysis during sleep has been shown to distinguish central from obstructive events.Citation26

Limitations

Several limitations warrant further investigation, some of which relate to the nature of a retrospective strategy. The clinical history was self-report, rather than sleep physician-obtained, and thus, do not capture variation in compliance with medications or severity of comorbidities. We did not subclassify hypopneas into central versus obstructive, which is now permitted by updated American Academy of Sleep Medicine guidelines, which may further inform the clinical significance and predictors of TECSA. We also do not have CO2 measurements in our laboratory, which might account for some of the variance in TECSA occurrence. Finally, the retrospective design does not inform the long-term consequences or resolution of the TECSA observed in single-night PAP exposure via the laboratory, such as might be obtained with repeated titration studies.

Authors’ contribution

M Moro and MTB performed the study design and analysis. M Moro, KG, KL, M Merlino, and MTB were responsible for data collection. M Moro, JM, and MTB were involved in the interpretation. All authors contributed toward data analysis, drafting, and critically revising the paper and agree to be accountable for all aspects of the work. All the authors have given their final approval of the manuscript.

Supplementary material

Table S1 Correlated factors with RxCAI ≥5

Disclosure

This study was not funded. Dr Bianchi received funding from the Department of Neurology, Massachusetts General Hospital, the Center for Integration of Medicine and Innovative Technology, Milton Family Foundation, Department of Defense, the American Sleep Medicine Foundation, MC10 Inc., and Insomnisolv, Inc. Dr Bianchi has a patent pending on a home sleep-monitoring device. Dr Bianchi received travel funding from Servier, served in the advisory board of Foramis, had consulting agreement with International Flavors and Fragrances, and had provided expert testimony in sleep medicine. This was not an industry-supported study. The authors report no other conflicts of interest in this work.

References

  • WangJWangYFengJChenBYCaoJComplex sleep apnea syndromePatient Prefer Adherence2013763364123861580
  • MorgenthalerTIKuzniarTJWolfeLFWillesLMcLainWC3rdGoldbergRThe complex sleep apnea resolution study: a prospective randomized controlled trial of continuous positive airway pressure versus adaptive servoventilation therapySleep201437592793424790271
  • JavaheriSSmithJChungEThe prevalence and natural history of complex sleep apneaJ Clin Sleep Med20095320521119960639
  • KuzniarTJPusalavidyasagarSGayPCMorgenthalerTINatural course of complex sleep apnea – a retrospective studySleep Breath200812213513917874254
  • DellwegDKerlJHoehnEWenzelMKoehlerDRandomized controlled trial of noninvasive positive pressure ventilation (NPPV) versus servoventilation in patients with CPAP-induced central sleep apnea (complex sleep apnea)Sleep20133681163117123904676
  • KuźniarTJMorgenthalerTITreatment of complex sleep apnea syndromeChest201214241049105723032455
  • PusalavidyasagarSSOlsonEJGayPCMorgenthalerTITreatment of complex sleep apnea syndrome: a retrospective comparative reviewSleep Med20067647447916931153
  • BitterTWesterheideNHossainMSComplex sleep apnoea in congestive heart failureThorax201166540240721393364
  • EckertDJJordanASMerchiaPMalhotraACentral sleep apnea: pathophysiology and treatmentChest2007131259560717296668
  • AuroraRNChowdhuriSRamarKThe treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analysesSleep2012351174022215916
  • MorgenthalerTIKagramanovVHanakVDeckerPAComplex sleep apnea syndrome: is it a unique clinical syndrome?Sleep20062991203120917040008
  • LehmanSAnticNAThompsonCCatchesidePGMercerJMcEvoyRDCentral sleep apnea on commencement of continuous positive airway pressure in patients with a primary diagnosis of obstructive sleep apnea-hypopneaJ Clin Sleep Med20073546246617803008
  • EndoYSuzukiMInoueYPrevalence of complex sleep apnea among Japanese patients with sleep apnea syndromeTohoku J Exp Med2008215434935418679009
  • CasselWCanisiusSBeckerHFA prospective polysomnographic study on the evolution of complex sleep apnoeaEur Respir J201138232933721464115
  • YaegashiHFujimotoKAbeHOriiKEdaSKuboKCharacteristics of Japanese patients with complex sleep apnea syndrome: a retrospective comparison with obstructive sleep apnea syndromeIntern Med200948642743219293541
  • JohnsonKGJohnsonDCBilevel positive airway pressure worsens central apneas during sleepChest200512842141215016236867
  • NakazakiCNodaAYasudaYContinuous positive airway pressure intolerance associated with elevated nasal resistance is possible mechanism of complex sleep apnea syndromeSleep Breath201216374775221830062
  • LeungRSHuberMARoggeTMaimonNChiuKLBradleyTDAssociation between atrial fibrillation and central sleep apneaSleep200528121543154616408413
  • HermannDMBassettiCLSleep-related breathing and sleep-wake disturbances in ischemic strokeNeurology200973161313132219841384
  • SalloumARowleyJAMateikaJHChowdhuriSOmranQBadrMSIncreased propensity for central apnea in patients with obstructive sleep apnea: effect of nasal continuous positive airway pressureAm J Respir Crit Care Med2010181218919319762565
  • LoewenAOstrowskiMLaprairieJDeterminants of ventilatory instability in obstructive sleep apnea: inherent or acquired?Sleep200932101355136519848364
  • CollopNAAndersonWMBoehleckeBClinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. Portable monitoring task force of the American Academy of Sleep MedicineJ Clin Sleep Med20073773774718198809
  • ICSD-3International Classification of Sleep Disorders, Third Edition: Diagnostic & Coding Manual2nd edWestchester, NYAmerican Academy of Sleep Medicine2014
  • KushidaCAChediakABerryRBClinical guidelines for the manual titration of positive airway pressure in patients with obstructive sleep apneaJ Clin Sleep Med20084215717118468315
  • DernaikaTTawkMNazirSYounisWKinasewitzGTThe significance and outcome of continuous positive airway pressure-related central sleep apnea during split-night sleep studiesChest20071321818717475636
  • ThomasRJMietusJEPengCKDifferentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based methodSleep200730121756176918246985
  • MontesiSBBakkerJPMacdonaldMAir leak during CPAP titration as a risk factor for central apneaJ Clin Sleep Med20139111187119124235901
  • EisemanNAWestoverMBEllenbogenJMBianchiMTThe impact of body posture and sleep stages on sleep apnea severity in adultsJ Clin Sleep Med201286655666A23243399
  • WesthoffMArztMLitterstPPrevalence and treatment of central sleep apnoea emerging after initiation of continuous positive airway pressure in patients with obstructive sleep apnoea without evidence of heart failureSleep Breath2012161717821347650
  • SharmaBOwensRMalhotraASleep in congestive heart failureMed Clin North Am201094344746420451026
  • ParraOArboixABechichSTime course of sleep-related breathing disorders in first-ever stroke or transient ischemic attackAm J Respir Crit Care Med20001612 Pt 137538010673174
  • WebsterLRChoiYDesaiHWebsterLGrantBJSleep-disordered breathing and chronic opioid therapyPain Med20089442543218489633
  • RamarKRamarPMorgenthalerTIAdaptive servoventilation in patients with central or complex sleep apnea related to chronic opioid use and congestive heart failureJ Clin Sleep Med20128556957623066370
  • CaoMCardellCYWillesLMendozaJBenjafieldAKushidaCA novel adaptive servoventilation (ASVAuto) for the treatment of central sleep apnea associated with chronic use of opioidsJ Clin Sleep Med201410885586125126031
  • ZleikBReiterJThomasRJResidual events during use of CPAP: prevalence, predictors, and detection accuracyPoster presented at: 29th Annual Meeting of the Associated Professional Sleep SocietiesJune 6–10, 2015Seattle, WA
  • MorgenthalerTIAuroraRNBrownTPractice parameters for the use of autotitrating continuous positive airway pressure devices for titrating pressures and treating adult patients with obstructive sleep apnea syndrome: an update for 2007. An American Academy of Sleep Medicine reportSleep200831114114718220088