68
Views
0
CrossRef citations to date
0
Altmetric
Review

Active axial spondyloarthritis: potential role of certolizumab pegol

&
Pages 87-94 | Published online: 12 Feb 2014

Abstract

The axial spondyloarthropathies are a group of chronic inflammatory diseases that predominantly affect the axial joints. This group includes ankylosing spondylitis and nonradiographic axial spondyloarthropathy. While the pathogenesis of axial spondyloarthropathies is not clear, immunologically active tissues primarily include the entheses, ie, the areas where ligaments, tendons, and joint capsules attach to bone and to the annulus fibrosis at the vertebrae. One of the major mediators of the immune response in this group of diseases is tumor necrosis factor-alpha (TNFα). Blockade of TNFα results in reduced vascularity and inflammatory cell infiltration in the synovial tissues of affected joints. Certolizumab pegol (CZP) is an Fc-free, PEGylated anti-TNFα monoclonal antibody. CZP has unique properties that differ from other available TNFα inhibitors by virtue of its lack of an Fc region, which minimizes potential Fc-mediated effects, and its PEGylation, which improves drug pharmacokinetics and bioavailability. It has been shown in clinical trials that CZP improves patient outcomes and reduces inflammation in the sacroiliac joints and spine in both ankylosing spondylitis and nonradiographic axial spondyloarthropathies. These data support CZP as a treatment option for axial spondyloarthropathies.

Introduction

The axial spondyloarthropathies (SpA) are a group of diseases characterized by inflammation at the axial joints, especially the sacroiliac joints. Other characteristic features are asymmetric oligoarthritis and enthesitis. Enthesitis, ie, inflammation of the insertional sites of ligaments, tendons, and joint capsules at the bone, is the pathologic feature that distinguishes these diseases from rheumatoid arthritis.Citation1 Extra-articular features associated with axial SpA include genital and skin lesions, and eye and bowel inflammation. Some patients present with ongoing or preceding gastrointestinal or urinary tract infection. This group of diseases is strongly associated with the human leukocyte antigen (HLA)-B27.

The axial SpA are comprised of five subgroups with different extra-articular manifestations. These include ankylosing spondylitis, reactive arthritis, psoriatic arthritis, SpA associated with Crohn’s disease and ulcerative colitis, and undifferentiated spondyloarthritis. The available evidence from immunopathologic analysis, structural changes, and response to treatment has not shown fundamental differences between the different SpA subtypes, suggesting that they share a common underlying pathophysiology. However, the data emerging from immunopathologic studies and clinical trials appear to show slight differences between axial and peripheral disease. This evidence favors disease classification into predominantly “axial” or “peripheral” SpA, rather than into subgroups defined by associated extra-articular disease manifestations.Citation2 SpA is further subdivided into ankylosing spondylitis and nonradiographic axial SpA.Citation3

The prevalence of SpA is about 1%, with ankylosing spondylitis being the most prevalent subtype, with an overall prevalence of about 0.5%.Citation4,Citation5 Prevalence varies among different populations and generally (but not perfectly) reflects the prevalence of HLA-B27.Citation6

The natural course of the disease is that of progressive stiffness and bony ankylosis of the spine due to inflammation and new bone formation, leading to decreased mobility, functional impairment, and decreased quality of life. Disability occurs in up to 20% of patients with ankylosing spondylitis within 20 years of disease onset.Citation7,Citation8 Increased mortality has been observed in patients with ankylosing spondylitis due to spinal fractures, cervical subluxation, aortitis, atrioventricular conduction disorders, pulmonary fibrosis, and amyloidosis. Active disease and ongoing inflammation are significant risk factors for premature death in ankylosing spondylitis. Conversely, early detection and treatment of the disease can prevent premature death and functional disability in patients with ankylosing spondylitis.Citation9 Nonsteroidal anti-inflammatory drugs (NSAIDs) are recommended as first-line therapy in addition to regular exercise and physical therapy.Citation10,Citation11 Biologic agents are recommended for patients with inadequate axial response to NSAIDs. In recent years, the US Food and Drug Administration (FDA) has approved several biological therapies for SpA, all being tumor necrosis factor-alpha (TNFα) inhibitors. These include infliximab, adalimumab, etanercept, and golimumab. Certolizumab pegol (CZP), a recombinant humanized antibody Fab′ fragment directed against TNFα, has recently been granted FDA approval for the treatment of active ankylosing spondylitis and psoriatic arthritis. This article discusses the role of CZP in the treatment of SpA.

Pathogenesis and mechanisms of inflammation in SpA

Pathology of SpA

The typical histologic finding of ankylosing spondylitis is that of multiple focal microscopic lesions in the tendons and ligaments at their attachment to bone, with associated erosion of the cortical bone. These lesions consist predominantly of lymphocytes and plasma cells, with some polymorphonuclear leucocytes. These inflammatory cells concentrate in the central part of the erosions and spread along the ligaments. The marrow space adjacent to the lesions is edematous and lacks hematopoietic tissue. These areas are found at both peripheral and axial sites of involvement, including the peripheral tendinous insertions (enthesopathy), axial annulus-vertebral margins, sacroiliac joints, plantar fascia, and symphysis pubis. Healing erosions are characterized by deposition of reactive bone in a finely fibrous connective tissue without cartilage formation. Over time, healing of the inflammatory lesions in SpA leads to calcification and spur formation and, in the case of the axial spine, ankylosis.Citation12

Immunologic mechanisms in SpA and comparisons with rheumatoid arthritis

The immunopathogenesis of SpA remains unclear. While there is a clear genetic predisposition, with the gene for HLA-B27 present in >90% of patients with ankylosing spondylitis, the overall contribution of HLA-B27 to ankylosing spondylitis susceptibility is estimated to be only 30%; its presence in other SpA is lower than in ankylosing spondylitis. Despite the increased risk that it confers, the presence of this gene is neither necessary nor sufficient to cause the disease,Citation13 and its role continues to be debated. A long-promoted hypothesis in which an environmental trigger elicits a self-damaging inflammatory response in a genetically susceptible individual is strongly supported by observations of the immune activation in involved tissues and by clinical interventions that suppress components of the host inflammatory response.Citation14 However, the exact nature of this immune response is unclear.

Analysis of the inflammatory synovitis associated with SpA reveals the cellular components characteristic of both innate and adaptive immunity, including T and B lymphocytes, dendritic cells, macrophages, natural killer cells, natural killer T cells, mast cells, and neutrophils. Focal bony lesions likewise contain T cells, B cells, and macrophages, and have been found to contain osteoclasts as well as cells involved in angiogenesis.Citation15,Citation16 These cells collaborate to generate high concentrations of inflammatory cytokines, primarily TNFα and interleukin-1β, as well as histamine, vasoactive amines, and bradykinin. Local production of proteinase cathepsin K (thought to be produced by osteoclasts) and metalloproteinases (localizing to smaller mononuclear cells) has been described, and these are felt to play a role in formation of the observed erosions in SpA.Citation17

Clinically, the presentations of SpA and rheumatoid arthritis differ in distribution of inflammatory involvement (annulus-vertebral/oligoarticular/enthesopathic versus polyarticular, respectively). Histologically, compared with rheumatoid arthritis, the synovial lining of peripheral joints with effusion in SpA are more vascular, and the vasculature is more tortuous.Citation18 Although both develop bony erosions, those in SpA heal with new bone formation, while those of rheumatoid arthritis can progress to bony destruction. Descriptive studies of cellular markers show that, whereas highly specific markers for intracellular citrullinated proteins and human cartilage glycoprotein 39 peptides are often found in rheumatoid arthritis, they are absent in SpA.Citation19 Synovial gene analysis has shown a highly disease-specific signature in SpA not found in rheumatoid arthritis, which was not altered by TNF blockade, suggesting that these patterns develop upstream in the disease process.Citation20

Serologic and immunologic data suggest that SpA may be driven more by innate immune mechanisms than rheumatoid arthritis. An increase of CD163+ macrophages, neutrophils, interleukin-17-producing mast cells, and Toll-like receptors in SpA, characteristic of innate immune activation, are not found in rheumatoid arthritis.Citation21,Citation22 The role of HLA-B27 in the pathogenesis of SpA and the role of the adaptive immune response in SpA is less evident, although it has been long recognized that serologically, autoantibody formation, a common feature of rheumatoid arthritis, is not a feature of SpA.

In summary, while our understanding of the immunopathologic features of the peripheral and axial spondyloarthropathies remains incomplete, they share similar immunopathologic mechanisms that appear to differ from those of rheumatoid arthritis. Both pathways of immune activation, however, lead to similar downstream effects in the form of inflammatory cytokines, in which TNFα appears to play a primary role.

TNFα and its role in SpA

TNFα is a 26 kDa homotrimer that binds to one of two receptors (TNFR), ie, TNFRp55 or TNFRp75. Ligand binding leads to induction of signal transduction pathways that activate nuclear factor κB.Citation23 Activated nuclear factor κB enters the cell nucleus, inducing transcription of genes that code for proteins associated with a broad range of effector functions, including activation of inflammatory pathways and apoptosis.

Specific effects of TNFα in SpA include leukocyte activation, which leads to production of cytokines, endothelial cell activation leading to enhanced adhesion molecule expression, fibroblast activation leading to tissue matrix enzyme release and reduced collagen synthesis, enhanced leukocyte migration to the tissues, osteoclast activation, and elevation of acute phase reactants.Citation14

Diagnosis of axial SpA

There is no universally accepted set of diagnostic criteria for SpA. The Modified New York criteriaCitation24 () are the most widely used for diagnosis in the patient with radiographic changes of sacroiliitis. Patients in an early stage of the disease who do not fulfill the Modified New York criteria can be diagnosed by the Assessment of SpondyloArthritis International Society (ASAS) criteriaCitation25 ().

Table 1 Modified New York Criteria for Ankylosing Spondylitis

Table 2 ASAS classification criteria for axial spondyloarthritis (SpA)

Management of SpA

The therapeutic options for SpA include physical therapy, exercise, and patient education in combination with pharmacologic intervention.

NSAIDS

NSAIDs including cyclooxygenase (COX)-2 inhibitors are recommended as first-line pharmacologic treatment for SpA. These drugs are effective in relieving pain and stiffness. There is no proof of the superiority of one NSAID over another in ankylosing spondylitis, and there are no consistent differences between NSAIDs and COX-2 selective inhibitors.Citation26 Adequate doses of at least two different NSAIDs should be tried for 4 weeks before concluding that response is inadequateCitation25 and that other agents may be required. Studies of the effect of NSAIDs on radiographic progression have yielded conflicting results.Citation26Citation29

Glucocorticoids

Oral glucocorticoids have limited efficacy in the treatment of axial SpA. Although both axial and peripheral joint pain and swelling may respond to short courses of glucocorticoids, long-term use is associated with side effects. Local glucocorticoid injections directed to the inflamed joints and entheses can provide temporary relief of symptoms.Citation30,Citation31

Disease-modifying antirheumatic drugs

The usual disease-modifying antirheumatic drugs, including sulfasalazine and methotrexate, have shown no efficacy in the treatment of axial disease. Sulfasalazine may be considered in patients with peripheral joint involvement.Citation30,Citation31

TNFα blockers

TNFα-blocking agents have been shown to be effective in the treatment of SpA. They are effective in controlling axial skeletal pain, peripheral arthritis, enthesitis, morning stiffness, mobility, functional activities, pulmonary function, and overall quality of life.Citation26 Combination therapy with conventional disease-modifying antirheumatic drugs has not demonstrated efficacy superior to that of monotherapy with anti-TNF.Citation23 A meta-analysis of randomized clinical trials of the anti-TNFα agents infliximab, etanercept, adalimumab, and golimumab showed improvement of ASAS 20 response, disease activity, physical function, and vertebral mobility after treatment when compared with controls.Citation32 Clinical trials have shown efficacy of anti-TNFα agents in inflammatory back pain classified as nonradiologic axial SpA in patients who had magnetic resonance imaging (MRI) findings of sacroiliitis, with partial remission rates of greater than 50%. This response rate was better than that seen in patients with established ankylosing spondylitis.Citation33

Efficacy is felt to be due to prevention of induction of TNFR-mediated cellular functions, including cell activation, cell proliferation, and cytokine and chemokine production. Long-term effects of anti-TNFα therapy include reduction of matrix-degrading enzymes and osteoclastogenic factors such as RANKL.Citation34 Those anti-TNF agents that bind to transmembrane TNF can also induce apoptosis by complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity. The profound immune cascade blockade caused by anti-TNFα agents has been shown to result in downregulation of inflammation with subsequent tissue remodeling of the synovial membrane in SpA, with one study showing, after 12 weeks of treatment with infliximab, a reduction of synovial lining thickness, endothelial activation, and inflammatory cell infiltration with polymorphonuclear cells, macrophages, and T cells.Citation35 Further evidence that improvement in these measures appears related to improvement in inflammation is suggested by reductions in inflammatory markers.Citation36

While the inflammation of SpA has been known for yearsCitation37Citation40 to be significantly decreased in patients treated with TNFα blockade, demonstration of similar reductions in radiographic progression and new bone formation has been more difficult, with shorter-term studiesCitation41Citation44 showing no benefit. Recent work has demonstrated that TNF inhibitors slow radiographic progression and new bone formation with prolonged and consistent use. They are most protective when started early in the disease and when use is constant and sustained over a long period of time.Citation27

Infliximab

Infliximab is a chimeric monoclonal IgG1 antibody that binds to the soluble and cell-bound forms of TNFα. It is administered at 5 mg/kg intravenously at baseline, week 2, and week 6, followed by infusions every 6 weeks thereafter. The first randomized, double-blind, controlled trial of anti-TNF therapy demonstrating the efficacy of infliximab in ankylosing spondylitis was published in 2002,Citation36 and confirmed in the 24-week (and 3-year extended) Ankylosing Spondylitis Study for the Evaluation of Recombinant Infliximab Therapy (ASSERT) trial in 2004.Citation45 Long-term efficacy was shown in disease activity and function in a study of 69 patients with active ankylosing spondylitis who were treated with infliximab 5 mg/kg every 6 weeks for 8 years, with almost 90% of patients achieving partial remission or low disease activity.Citation46 FDA approval was granted in 2004.

Etanercept

Etanercept is a recombinant DNA-derived protein composed of TNFR linked to the Fc portion of human IgG1 fused to two extracellular domains of the TNFRp75. Etanercept binds the soluble form of TNF and blocks its interaction with cell surface receptors. Etanercept is administered in doses of 50 mg subcutaneously per week or 25 mg twice subcutaneously weekly. In a longitudinal study of patients with active axial and peripheral arthritis or enthesitis who had failed to respond to NSAIDs and traditional disease-modifying antirheumatic drugs, treatment with etanercept 25 mg twice weekly achieved significant improvement of enthesitis and subchondral edema on MRI of the sacroiliac joints at 6 months.Citation47 The effectiveness of etanercept was compared with that of sulfasalazine in two head-to-head randomized trials on patients with diagnoses of ankylosing spondylitis and nonradiographic axial SpA. Based on MRI findings, these trials showed definitive improvement of inflammation at the sacroiliac joints, spine, and enthesitic sites in patients treated with etanercept. Enthesitis detected by MRI was not improved in the sulfasalazine group.Citation48,Citation49

Adalimumab

Adalimumab is a recombinant monoclonal antibody that binds to human TNFαCitation50 at the TNFα receptor sites, blocking the cytokine-driven inflammatory processes in SpA. It is approved by the FDA for use in ankylosing spondylitis at a dose of 40 mg every other week, administered subcutaneously. Adalimumab has been shown in a randomized, placebo-controlled trial of patients with nonradiographic axial spondyloarthropathy to reduce disease activity, decrease inflammation, and improve quality of life after 12 weeks of treatment when administered at 40 mg every 4 weeks.Citation51 It has also been shown to reduce spinal and joint inflammation by MRI after 12 weeks of treatment, with efficacy maintained after 52 weeks of therapy.Citation52

Golimumab

Golimumab is a fully human monoclonal antibody that binds to human TNFα,Citation50 thereby interfering with endogenous TNFα activity. It may be administered with or without methotrexate or other nonbiologic disease-modifying antirheumatic drugs in psoriatic arthritis or ankylosing spondylitis. It has shown efficacy in ankylosing spondylitis after 24 weeks of treatment in a randomized, placebo-controlled trial.Citation53 It is approved by the FDA for the treatment of ankylosing spondylitis and is administered at 50 mg subcutaneously once monthly.

Certolizumab pegol

CZP is an Fc-free, PEGylated anti-TNFα monoclonal antibody that binds and neutralizes both soluble and transmembrane TNFα and inhibits signaling through both p55 and p75 TNFRs in vitro.Citation54 CZP differs from other TNFα inhibitors in its lack of an Fc region, which minimizes potential Fc-mediated effects such as complement-dependent cytotoxicity. The lack of an Fc region may be a factor in prevention of the active transfer of CZP across the placenta during pregnancy. However, the clinical significance of this finding is currently unknown. Therefore, CZP is classified as pregnancy category B, as are the other four TNF inhibitors; this product should only be used during pregnancy if clearly needed. In contrast with other TNF inhibitors, CZP does not induce apoptosis in activated peripheral blood lymphocytes. Like infliximab and adalimumab (but not etanercept), it inhibits lipopolysaccharide-induced production of interleukin-1β.Citation55

CZP is able to offer the benefits of using only the Fab′ fragment of monoclonal antibody by virtue of its PEGylation. In addition to reduction of antigenicity and immunogenicity, PEGylation improves the circulating half-life of a drug via reduction of its renal clearance (related to the increased size of the molecule). This increased circulatory half-life, which in the case of CZP is approximately 14 days for all doses administered, allows dosing intervals to be increased.Citation56Citation58 CZP has 80% bioavailabilityCitation58 and has been shown to have increased permeability and persistence in inflamed tissues in mouse models when compared with adalimumab and infliximab; whether this is due to its PEGylation or lack of an Fc component is unclear.Citation59 Despite having only a monovalent antibody fragment, unpublished data have suggested that CZP has a higher in vitro potency than divalent infliximab or adalimumab.Citation60

Immunogenicity of CZP

Data from three studies involving patients with Crohn’s disease has noted the development of antibodies directed against CZP in 6%–12% of patients receiving it.Citation61Citation63 The presence of antibodies did not adversely affect response to therapy, even when associated with lower plasma concentrations of CZP; antibody levels were low in patients receiving concomitant immunosuppressant therapy.Citation61

CZP in clinical trials

The demonstrated efficacy and safety of CZP in randomized clinical trials of patients with rheumatoid arthritisCitation64Citation68 and Crohn’s diseaseCitation61,Citation69 has resulted in FDA approval of its use in these diseases. CZP can be used as monotherapy or in combination with disease-modifying antirheumatic drugs for the treatment of moderate-to-severe rheumatoid arthritis. The recommended dose in rheumatoid arthritis is 400 mg subcutaneously at weeks 0, 2, and 4, and every 2 weeks thereafter. The dosing for Crohn’s disease is 400 mg subcutaneously at weeks 0, 2, 4, followed by 400 mg every 4 weeks.

In the SpA spectrum of diseases, FDA approval has recently been granted for the use of CZP in ankylosing spondylitis and psoriatic arthritis. Approval for use in psoriatic arthritis in September 2013 was based on data from the RAPID-PsA study, an ongoing, multicenter, randomized, double-blind, placebo-controlled trial of 409 patients with psoriatic arthritis. CZP-treated patients demonstrated significant efficacy by week 12, with improvements noted in arthritis, enthesitis, dactylitis, psoriasis, and physical function.Citation70 Approval for use in ankylosing spondylitis was granted in October 2013, based on a similar multicenter, randomized, double-blind, placebo-controlled trial involving 325 patients with ankylosing spondylitis that demonstrated significant efficacy by week 12.Citation71 In both of these trials, CZP dosed at 200 mg every 2 weeks and 400 mg every 4 weeks appeared to show similar efficacy. At this time, no studies are available showing CZP to have efficacy superior to that of other TNFα inhibitors available for the treatment of SpA.

Conclusion

Clinical trials available to date have shown subcutaneous CZP to be effective and to have an acceptable tolerability profile when used as monotherapy in active ankylosing spondylitis and nonradiographic axial SpA. Its structure as an Fc-free, PEGylated anti-TNF agent offers potentially unique benefits in the treatment of these debilitating disorders. Additional studies are needed to assess its long-term effects on disease activity and to further define its limitations and potential adverse effects in order to compare its profile with those of the other available anti-TNFα agents and thus determine its place in the SpA treatment armamentarium.

Disclosure

The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

References

  • CawleyMIChalmersTMKellgrenJHBallJDestructive lesions of vertebral bodies in ankylosing spondylitisAnn Rheum Dis19723153453584116083
  • BaetenDBrebanMLoriesRSchettGSieperJAre spondylarthritides related but distinct conditions or a single disease with a heterogeneous phenotype?Arthritis Rheum2013651122023288559
  • RudwaleitMvan der HeijdeDLandeweRThe development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selectionAnn Rheum Dis200968677778319297344
  • AkkocNKhanMEpidemiology of ankylosing spondylitis and related spondyloarthropathiesWeismanMHReveilleJDVan der HeijdeDAnkylosing Spondylitis and the SpondyloarthropathiesPhiladelphia, PA, USAMosby Elsevier2006
  • BaklandGNossentHCGranJTIncidence and prevalence of ankylosing spondylitis in Northern NorwayArthritis Rheum200553685085516342091
  • KhanMAEpidemiology of HLA-B27 and arthritisClin Rheumatol199615Suppl 110128835494
  • WardMMQuality of life in patients with ankylosing spondylitisRheum Dis Clin North Am19982448158279891712
  • WardMMKuzisSRisk factors for work disability in patients with ankylosing spondylitisJ Rheumatol200128231532111246669
  • BaklandGGranJTNossentJCIncreased mortality in ankylosing spondylitis is related to disease activityAnn Rheum Dis201170111921192521784726
  • DougadosMDijkmansBKhanMMaksymowychWvan der LindenSBrandtJConventional treatments for ankylosing spondylitisAnn Rheum Dis200261Suppl 3iii40iii5012381510
  • KraagGStokesBGrohJHelewaAGoldsmithCThe effects of comprehensive home physiotherapy and supervision on patients with ankylosing spondylitis – a randomized controlled trialJ Rheumatol19901722282332181127
  • BallJEnthesopathy of rheumatoid and ankylosing spondylitisAnn Rheum Dis19713032132234103800
  • BraunJAnkylosing spondylitis: pathology and pathogenesisKlippelJStoneJCroffordLWhitePPrimer on the Rheumatic Diseases13th edNew York, NY, USASpringer2008
  • FitzGeraldOMcInnesISpondyloarthropathy: disease at the crossroads of immunityBest Pract Res Clin Rheumatol200620594996716980217
  • AppelHKuhneMSpiekermannSImmunohistochemical analysis of hip arthritis in ankylosing spondylitis: evaluation of the bone-cartilage interface and subchondral bone marrowArthritis Rheum20065461805181316736521
  • FrancoisRJNeureLSieperJBraunJImmunohistological examination of open sacroiliac biopsies of patients with ankylosing spondylitis: detection of tumour necrosis factor alpha in two patients with early disease and transforming growth factor beta in three more advanced casesAnn Rheum Dis200665671372016249231
  • NeidhartMBaraliakosXSeemayerCExpression of cathepsin K and matrix metalloproteinase 1 indicate persistent osteodestructive activity in long-standing ankylosing spondylitisAnn Rheum Dis20096881334133918678577
  • BaetenDDemetterPCuvelierCComparative study of the synovial histology in rheumatoid arthritis, spondyloarthropathy, and osteoarthritis: influence of disease duration and activityAnn Rheum Dis2000591294595311087697
  • BaetenDKruithofEDe RyckeLDiagnostic classification of spondylarthropathy and rheumatoid arthritis by synovial histopathology: a prospective study in 154 consecutive patientsArthritis Rheum20045092931294115457462
  • YeremenkoNNoordenbosTCantaertTDisease-specific and inflammation-independent stromal alterations in spondylarthritis synovitisArthritis Rheum201365117418522972410
  • BaetenDDemetterPCuvelierCAMacrophages expressing the scavenger receptor CD163: a link between immune alterations of the gut and synovial inflammation in spondyloarthropathyJ Pathol2002196334335011857499
  • NoordenbosTYeremenkoNGofitaIInterleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritisArthritis Rheum20126419910921968742
  • ChatzikyriakidouAGeorgiouIVoulgariPVDrososAAThe role of tumor necrosis factor (TNF)-alpha and TNF receptor polymorphisms in susceptibility to ankylosing spondylitisClin Exp Rheumatol200927464564819772798
  • van der LindenSValkenburgHACatsAEvaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteriaArthritis Rheum19842743613686231933
  • van der HeijdeDSieperJMaksymowychWP2010 Update of the international ASAS recommendations for the use of anti-TNF agents in patients with axial spondyloarthritisAnn Rheum Dis201170690590821540200
  • ToussirotECurrent therapeutics for spondyloarthritisExpert Opin Pharmacother201112162469247721988214
  • HaroonNInmanRDLearchTJThe impact of TNF-inhibitors on radiographic progression in ankylosing spondylitisArthritis Rheum201365102645265423818109
  • KroonFLandeweRDougadosMvan der HeijdeDContinuous NSAID use reverts the effects of inflammation on radiographic progression in patients with ankylosing spondylitisAnn Rheum Dis201271101623162922532639
  • SongIHPoddubnyyDARudwaleitMSieperJBenefits and risks of ankylosing spondylitis treatment with nonsteroidal antiinflammatory drugsArthritis Rheum200858492993818383378
  • BraunJvan den BergRBaraliakosX2010 update of the ASAS/EULAR recommendations for the management of ankylosing spondylitisAnn Rheum Dis201170689690421540199
  • LavieFPavySDernisEPharmacotherapy (excluding biotherapies) for ankylosing spondylitis: development of recommendations for clinical practice based on published evidence and expert opinionJoint Bone Spine200774434635217590370
  • MachadoMABarbosaMMAlmeidaAMTreatment of ankylosing spondylitis with TNF blockers: a meta-analysisRheumatol Int20133392199221323686218
  • HaibelHRudwaleitMListingJEfficacy of adalimumab in the treatment of axial spondylarthritis without radiographically defined sacroiliitis: results of a twelve-week randomized, double-blind, placebo-controlled trial followed by an open-label extension up to week fifty-twoArthritis Rheum20085871981199118576337
  • GengenbacherMSebaldHJVilligerPMHofstetterWSeitzMInfliximab inhibits bone resorption by circulating osteoclast precursor cells in patients with rheumatoid arthritis and ankylosing spondylitisAnn Rheum Dis200867562062417720725
  • KruithofEBaetenDVan den BoschFMielantsHVeysEMDe KeyserFHistological evidence that infliximab treatment leads to downregulation of inflammation and tissue remodelling of the synovial membrane in spondyloarthropathyAnn Rheum Dis200564452953615388510
  • BraunJBrandtJListingJTreatment of active ankylosing spondylitis with infliximab: a randomised controlled multicentre trialLancet200235993131187119311955536
  • RevickiDALuoMPWordsworthPWongRLChenNDavisJCJrATLAS Study GroupAdalimumab reduces pain, fatigue, and stiffness in patients with ankylosing spondylitis: results from the Adalimumab Trial Evaluating Long-Term Safety and Efficacy for Ankylosing Spondylitis (ATLAS) [published erratum appears in J Rheumatol 2011;38:788]J Rheumatol20083513465318484692
  • Van der HeijdeDDijkmansBGeusensPSieperJDeWoodyKWilliamsonPAnkylosing Spondylitis Study for the Evaluation of Recombinant Infliximab Therapy Study GroupEfficacy and safety of infliximab in patients with ankylosing spondylitis: results of a andomized, placebo-controlled trial (ASSERT)Arthritis Rheum2005525829115692973
  • BraunJvan der Horst-BruinsmaIEHuangFBurgos-VargasRVlahosBKoenigASClinical efficacy and safety of etanercept versus sulfasalazine in patients with ankylosing spondylitis: a randomized, double-blind trialArthritis Rheum20116315435121630245
  • InmanRDDavisJCJrvan der HeijdeDDiekmanLSieperJKimSIEfficacy and safety of golimumab in patients with ankylosing spondylitis: results of a randomized, double-blind, placebo-controlled, phase III trialArthritis Rheum2008583402341218975305
  • Van der HeijdeDSalonenDWeissmanBNLandeweRMaksymowychWPKupperHCanadian (M03-606) Study GroupATLAS Study GroupAssessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 yearsArthritis Res Ther200911R12719703304
  • Van der HeijdeDLandeweRBaraliakosXHoubenHvan TubergenAWilliamsonPAnkylosing Spondylitis Study for the Evaluation of Recombinant Infliximab Therapy Study GroupRadiographic findings following two years of infliximab therapy in patients with ankylosing spondylitisArthritis Rheum20085830637018821688
  • Van der HeijdeDLandeweREinsteinSOryPVosseDNiLRadiographic progression of ankylosing spondylitis after up to two years of treatment with etanerceptArthritis Rheum20085813243118438853
  • GranJTSkomsvollJFThe outcome of ankylosing spondylitis: a study of 100 patientsBr J Rheumatol1997367667719255111
  • van der HeijdeDDijkmansBGeusensPEfficacy and safety of infliximab in patients with ankylosing spondylitis: results of a randomized, placebo-controlled trial (ASSERT)Arthritis Rheum200552258259115692973
  • BaraliakosXListingJFritzCPersistent clinical efficacy and safety of infliximab in ankylosing spondylitis after 8 years – early clinical response predicts long-term outcomeRheumatology (Oxford)20115091690169921672969
  • Marzo-OrtegaHMcGonagleDO’ConnorPEmeryPEfficacy of etanercept in the treatment of the entheseal pathology in resistant spondylarthropathy: a clinical and magnetic resonance imaging studyArthritis Rheum20014492112211711592375
  • BraunJvan der Horst-BruinsmaIEHuangFClinical efficacy and safety of etanercept versus sulfasalazine in patients with ankylosing spondylitis: a randomized, double-blind trialArthritis Rheum20116361543155121630245
  • SongIHHermannKHaibelHEffects of etanercept versus sulfasalazine in early axial spondyloarthritis on active inflammatory lesions as detected by whole-body MRI (ESTHER): a 48-week randomised controlled trialAnn Rheum Dis201170459059621372193
  • NashPTFlorinTHTumour necrosis factor inhibitorsMed J Aust2005183420520816097922
  • SieperJvan der HeijdeDDougadosMEfficacy and safety of adalimumab in patients with non-radiographic axial spondyloarthritis: results of a randomised placebo-controlled trial (ABILITY-1)Ann Rheum Dis201372681582222772328
  • LambertRGSalonenDRahmanPAdalimumab significantly reduces both spinal and sacroiliac joint inflammation in patients with ankylosing spondylitis: a multicenter, randomized, double-blind, placebo-controlled studyArthritis Rheum200756124005401418050198
  • InmanRDDavisJCJrHeijdeDEfficacy and safety of golimumab in patients with ankylosing spondylitis: results of a randomized, double-blind, placebo-controlled, phase III trialArthritis Rheum200858113402341218975305
  • DeeksEDCertolizumab pegol: a review of its use in the management of rheumatoid arthritisDrugs2013731759723338540
  • NesbittAFossatiGBerginMMechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor alpha agentsInflamm Bowel Dis200713111323133217636564
  • VeroneseFMPasutGPEGylation, successful approach to drug deliveryDrug Discov Today200510211451145816243265
  • ChapmanAPPEGylated antibodies and antibody fragments for improved therapy: a reviewAdv Drug Deliv Rev200254453154512052713
  • US Food and Drug AdministrationUCBPharmaCimzia (certolizumab pegol) lyophilized powder or solution for subcutaneous use: US prescribing information2012 Available from; http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/125160s189lbl.pdfAccessed November 12, 2013
  • PalframanRAireyMMooreAVuglerANesbittAUse of biofluorescence imaging to compare the distribution of certolizumab pegol, adalimumab, and infliximab in the inflamed paws of mice with collagen-induced arthritisJ Immunol Methods20093481–2364119567252
  • NesbittAHenryAHigh affinity and potency of the pegylated Fab’ fragment CDP870. Direct comparison with other anti-TNF agentsAm J Gastroenterol200499Suppl 10S253
  • SchreiberSKhaliq-KareemiMLawranceICMaintenance therapy with certolizumab pegol for Crohn’s diseaseN Engl J Med2007357323925017634459
  • SchreiberSRutgeertsPFedorakRNA randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s diseaseGastroenterology2005129380781816143120
  • SandbornWJAbreuMTD’HaensGCertolizumab pegol in patients with moderate to severe Crohn’s disease and secondary failure to infliximabClin Gastroenterol Hepatol201088688695. e68220451663
  • SmolenJLandeweRBMeasePEfficacy and safety of certolizumab pegol plus methotrexate in active rheumatoid arthritis: the RAPID 2 study. A randomised controlled trialAnn Rheum Dis200968679780419015207
  • FleischmannRVencovskyJvan VollenhovenRFEfficacy and safety of certolizumab pegol monotherapy every 4 weeks in patients with rheumatoid arthritis failing previous disease-modifying antirheumatic therapy: the FAST4WARD studyAnn Rheum Dis200968680581119015206
  • KeystoneEHeijdeDMasonDJrCertolizumab pegol plus methotrexate is significantly more effective than placebo plus methotrexate in active rheumatoid arthritis: findings of a fifty-two-week, phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group studyArthritis Rheum200858113319332918975346
  • ChoyEHHazlemanBSmithMEfficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II double-blinded, randomized, dose-escalating trialRheumatology (Oxford)200241101133113712364632
  • Ruiz GarciaVJobanputraPBurlsACertolizumab pegol (CDP870) for rheumatoid arthritis in adultsCochrane Database Syst Rev20112CD00764921328299
  • SandbornWJFeaganBGStoinovSCertolizumab pegol for the treatment of Crohn’s diseaseN Engl J Med2007357322823817634458
  • MeasePJFleischmannRDeodharAAEffect of certolizumab pegol on signs and symptoms in patients with psoriatic arthritis: 24-week results of a Phase 3 double-blind randomised placebo-controlled study (RAPID-PsA)Ann Rheum Dis10162013 [Epub ahead of print.]
  • LandeweRBraunJDeodharAEfficacy of certolizumab pegol on signs and symptoms of axial spondyloarthritis including ankylosing spondylitis: 24-week results of a double-blind randomised placebo-controlled Phase 3 studyAnn Rheum Dis962013 [Epub ahead of print.]