62
Views
6
CrossRef citations to date
0
Altmetric
Review

Use of ibandronate in the prevention of skeletal events in metastatic breast cancer

&
Pages 453-458 | Published online: 11 Apr 2008

Abstract

Bone metastasis from breast cancer often cause significant morbidity including pain, impaired mobility, pathological fracture, and spinal cord compression. Bisphosphonates play an important role in preventing these skeletal related events and are the standard of care for patients with bone metastasis from breast cancer. Ibandronate is a highly potent bisphosphonate available in both intravenous and oral preparations. It has been shown in clinical trials to be effective in reducing skeletal complications and also significantly improve quality of life up to 96 weeks. Unlike other intravenous bisphosphonates, ibandronate has minimal renal toxicity, allowing safe outpatient administration, reducing the need for hospital attendance and safety monitoring. Early trials have shown ibandronate may also be effective in high doses for palliation of opioid-resistant pain from bone metastasis, and as a second-line agent in patients developing a skeletal complication whilst receiving another bisphosphonate.

Introduction

Metastatic bone disease is prevalent in advanced cancer. Typically, 65%–75% of patients with breast cancer develop skeletal metastases, the onset of which can have profound effects on quality of life and functional status (CitationDiel et al 2004). Bone metastases cause significant morbidity, including bone pain, impaired mobility, pathological fracture, and spinal cord or nerve root compression (CitationBody et al 2000; CitationColeman 2001) Since patients with breast cancer and bone metastases survive on average for 2.5 years (CitationDiel et al 2000), treatment strategies must be well tolerated during long-term use.

A balance between the action and activity of osteoclasts and osteoblasts maintains bone strength and integrity. The adult skeleton is continually remodeling; the osteoclast first removes old bone and then new bone is formed by the osteoblast. Metastatic breast cancer cells release hormones, which cause bone destruction by inducing osteoclast activation. This leads to the formation of lytic metastasis. These hormones include parathyroid related peptide, prostaglandins, tumour necrosis factor and macrophage colony stimulating factor all which act by increasing the expression of receptor activator of nuclear factor-κβ ligand (RANKL) (CitationGrano et al 2000). The bone that is resorbed by the activated osteoclast is a rich source of inactive growth factors. When released into the bone microenvironment these growth factors provide stimulus for surrounding breast cancer cells (CitationPfeilschifter and Mundy 1987).

Traditionally the main treatment for bone metastases from breast cancer has been chemotherapy or endocrine therapy. External beam radiation is indicated for painful localized sites. Bisphosphonates have become an additional treatment option. This class of drugs effectively reduces the risk of skeletal complications from metastatic bone disease, and is currently considered to be the standard of care for most patients with bone metastases from breast cancer (CitationHultborn et al 1999; CitationRosen et al 2001; CitationPavlakis and Stockler 2002; CitationHillner et al 2003; CitationLipton 2003). In patients with metastatic breast cancer bisphosphonate treatment does not appear to influence survival (CitationPavlakis and Stockler 2002).

Bisphosphonates are selectively concentrated in bone where they utilize a number of mechanisms to inhibit bone resorption. Firstly, they bind avidly to the bone mineral at sites of active metabolism and, in doing so, inhibit the dissolution of hydroxyapatite crystals (CitationRussell et al 1999). Clodronate (Bonefos®; Schering AG, Berlin, Germany; and Ostac®, Loron®, F.Hoffmann-La Roche Ltd, Basel, Switzerland) is a non-nitrogen-containing bisphosphonate and works through this mechanism of action. Nitrogen-containing bisphosphonates (N-BPs) which include pamidronate (Aredia®; Novartis Pharmaceutical Corp.; East Hanover, NJ, USA), alendronate (Fosamax®; Merck and Company, Inc.; West Point, PA, USA), ibandronate, risedronate (Actonel®; Proctor and Gamble Pharmaceuticals, Inc.; Cincinnati, OH, USA), and zoledronic acid (Zometa®; Novartis Pharmaceuticals Corp.) also inhibit osteoclast activity and survival through a number of other mechanisms. The N-BPs are internalized by osteoclasts and inhibit a key enzyme important in regulation of cell survival, proliferation, and cytoskeletal organization (CitationZhang and Casey 1996; CitationLuckman et al 1998; CitationOliff 1999; CitationRussell et al 1999). The inhibition of this enzyme also leads to morphological changes in the osteoclast rendering it unable to form a ruffled border on the bone surface, an essential step in osteoclast-mediated bone resorption (CitationLuckman, Hughes et al 1998). More recently N-BPs have been found to directly induce apoptosis in the osteoclast (CitationMonkkonen et al 2006). Preclinical trials have suggested that, in addition to anti-osteoclastic activity, bisphosphonates may also exhibit direct anti-tumor activity. The mechanisms of action are still being investigated. In vitro studies and animal studies have shown treatment with bisphosphonates decreases tumor burden in bone (CitationHiraga et al 2001; CitationDaubine et al 2007). Studies examining the effect of bisphosphonate treatment on visceral metastasis have been conflicting, some showing a reduction in tumor burden and others increased activity (CitationNobuyuki H 2001; CitationMichigami et al 2002). This direct effect on tumor cells has not corresponded with a survival advantage.

Four bisphosphonates are available for treatment of bone metastasis in metastatic breast cancer (MBC): clodronate, pamidronate, zoledronic acid, and ibandronate. All four drugs have been shown in clinical studies to be effective in palliating pain, reducing skeletal related events and improving quality of life. American Society of Clinical Oncology consensus guidelines suggest commencing bisphosphonate therapy in patients with bone metastases and evidence of bony destruction on plain radiograph, CT, or MRI. At this time, there is no role for commencing bisphosphonate therapy in patients with an abnormal nuclear bone scan only (CitationHillner et al 2003). Bisphosphonates used for treatment of bony metastasis from breast cancer have different dosage and scheduling (). The optimal duration of bisphosphonate therapy for MBC is not known and guidelines suggest life-long therapy once bisphosphonates are commenced. Similarly, the optimal frequency of administration of long-term bisphosphonate therapy is not known. Consensus guidelines suggest standard dosing continue indefinitely in the absence of toxicity.

Table 1 Dosage and scheduling of bisphosphonates used for treatment of bony metastasis from breast cancer

Although intravenous bisphosphonates have established efficacy in patients with bone metastases, the intravenous route is cumbersome, especially for long-term use that requires administration in hospital or home nurse visits. Several studies have shown that patients prefer oral over intravenous therapy (CitationLiu et al 1997; CitationPaley et al 2005). Bisphosphonates such as pamidronate and zoledronic acid have the potential to cause renal toxicity, especially when they are administered too quickly and/or at an excessive dose (CitationAli et al 2001; CitationBanerjee et al 2003; CitationChang et al 2003). Regular serum creatinine monitoring is required before each infusion, which increases the demands on healthcare resources (NovartisPharma). Oral bisphosphonates such as clodronate are more convenient than intravenous treatment, yet the efficacy of such oral bisphosphonates is often considered inferior to intravenous agents (CitationMajor et al 2000). In addition, oral clodronate can be associated with gastrointestinal adverse effects and suboptimal compliance due to the large tablets and complex dosing regimens (CitationPaterson et al 1993; CitationAtula et al 2003). The ideal palliative bisphosphonate therapy should therefore combine oral convenience and intravenous efficacy with maximum safety. Ibandronate (ibandronic acid) is a single nitrogen-containing bisphosphonate available as intravenous and oral formulations.

Efficacy of ibandronate

The efficacy of ibandronate in reducing skeletal related events (SREs) has been assessed in three placebo controlled, phase III trials in patients with bone metastasis and MBC. In all three trials, ibandronate reduced the relative risk of SREs by approximately 40% (CitationBody et al 2003b; Body et al 2004a).

In the study of intravenous ibandronate, 466 patients were randomized to either placebo or 2 mg or 6 mg of ibandronate 3–4 weekly, for up to 2 years. The primary endpoint of the study was the number of 12-week periods with new bone complications expressed as the skeletal morbidity period rate (SMPR). New bone complications were defined as vertebral fractures, pathological non-vertebral fractures, radiotherapy, or surgery for bone complications (pain or impending fractures). Secondary outcomes were bone pain and safety. Patients in the 6 mg ibandronate group showed a reduction in SMPR of 20% compared with placebo (1.19 vs 1.48; p = 0.004). There was also a statistically significant decrease in the number of new bone events (2.65 events per patient vs 3.64; p = 0.032) and time to first bone event from randomization (50.6 weeks vs 33.1; p = 0.018) between ibandronate 6 mg and placebo. Bone pain was also significantly improved in patients receiving 6 mg ibandronate with a rapid reduction in their pain score that persisted throughout the study. Ibandronate was well tolerated with a safety profile similar to placebo and no renal toxicity documented (CitationBody et al 2003a).

Oral ibandronate was evaluated using pooled data from 2 identical clinical trials prespecified in the individual trial protocols. Five hundred and forty-six patients received oral ibandronate 20 mg, 50 mg, or placebo daily for up to 2 years. Only the results of the 50 mg dose vs placebo were reported, which is the recommended dose. The primary endpoint was SMPR. Patients taking oral ibandronate were found to have a significantly lower SMPR than those taking placebo (0.95 vs 1.18; p = 0.004) and there was a decrease in mean number of skeletal events per patient (1.15 vs 1.85; p = 0.008) (Body et al 2004b).

A phase III trial comparing oral ibandronate and i.v. zoledronic acid has been conducted using bone turnover markers as a surrogate measurement of bisphosphonate efficacy (CitationBody et al 2007). Two hundred and seventy-five patients with bone metastasis and metastatic breast cancer received either 4 mg zoledronic acid every 4 weeks or 50 mg/day of oral ibandronate for 12 weeks. The primary endpoint was mean percentage change in serum levels of cross-linked C-terminal telopeptide of type I collagen (S-CTX) at week 12 reflecting the rate of bone resorption. Both bisphosphonates significantly reduced S-CTX from baseline and noninferiority was demonstrated between the two treatments. Ibandronate was better tolerated with less pyrexia and bone pain. There are currently no published trials prospectively comparing the efficacy of pamidronate or zoledronic acid to ibandronate in reducing SREs in metastatic breast cancer. However randomized phase III trials are in progress.

Palliation of symptoms with ibandronate

The use of both oral and intravenous ibandronate is well established as an effective treatment for the palliation of pain from bone metastasis. Compared with placebo, 6 mg of ibandronate i.v. administered 3–4 weekly significantly improved bone pain, quality of life, and functional assessments (p < 0.05) for up to 96 weeks after treatment commenced. This improvement was statistically significant in all domains assessed including physical, social and emotional functioning and global health status (CitationDiel, Body et al 2004). This prolonged benefit with ibandronate contrasts with pamidronate where long-term treatment did not significantly reduce bone pain after 1–2 years of treatment (CitationHortobagyi et al 1998). Oral ibandronate has also been shown to improve bone pain and quality of life compared with placebo (Body et al 2004a). A similar study with 435 patients comparing oral ibandronate 50 mg with placebo showed a trend towards improved pain scores and decreased analgesic use (p = 0.074) but did not reach statistical significance (CitationTripathy et al 2004).

Bisphosphonates can take up to 12 weeks to achieve their maximal analgesic effect. Studies have assessed whether higher doses of bisphosphonate can achieve earlier pain relief. Ibandronate is ideally suited for this purpose having a more favorable safety profile than either pamidronate or zoledronic acid. Eighteen patients with a variety of malignant tumours, including metastatic breast cancer, and a history of moderate to severe opioid-resistant metastatic bone pain received nonstandard treatment with 4 mg of ibandronate administered i.v. (2-hour infusion) for 4 consecutive days (16 mg total dose). All patients had baseline opiate use of 400 mg/day. Intensive ibandronate treatment significantly reduced bone pain scores within 7 days (p < 0.001) and this was maintained over the 6-week study period. Overall quality of life, patient functioning, and performance status also improved significantly (p < 0.05). There was no evidence of renal toxicity in the 18 patients treated (CitationMancini et al 2004).

A recent phase II study examined the role of second-line ibandronate in patients who suffered an SRE or progressive metastatic disease whilst receiving clodronate or pamidronate. Patients received 50 mg oral ibandronate for 12 weeks. A palliative response was defined a priori as a two-unit reduction in pain score. Thirty patients with metastatic breast cancer completed the study. At 12 weeks patients achieved a significant improvement in pain control (OR 0.41; p = 0.028), 46% of those being a palliative response and thus clinically relevant (CitationClemons et al 2008). This finding needs further investigation in the setting of a randomized trial, however, if confirmed, it may mean that a variety of bisphosphonates can be used through the course of a patient’s disease.

Safety of ibandronate

Bisphosphonate therapy in metastatic breast cancer is used as palliative treatment therefore toxicity and tolerability is a major consideration. These effects differ according to the route of administration and the drug used. The main adverse events associated with bisphosphonate therapy are acute-phase reactions, gastrointestinal toxicity, renal toxicity, and, rarely, osteonecrosis of the jaw.

Flu-like symptoms, joint pain, and pyrexia are all transient acute phase reactions that can occur after bisphosphonate infusions. Two trials have compared the safety of ibandronate with that of zoledronic acid. One administered an initial dose of intravenous ibandronate followed by daily oral treatment; the other used oral ibandronate alone, compared with intravenous zoledronic acid administered 3–4 weekly. Patients receiving intravenous ibandronate experienced less flu like symptoms than those treated with zoledronic acid (13% vs 26%) (CitationBergstrom et al 2006). The incidence of flu-like symptoms was, not surprisingly, lower in the patients receiving oral ibandronate compared with zoledronic acid (2% vs 27%) (CitationBody et al 2006).

Oral bisphosphonates have typically been associated with gastrointestinal toxicity. Clodronate, due to its low bioavailability, is a large tablet administered twice daily. When administered for 2 years in patients with breast cancer it was associated with increased gastrointestinal toxicity compared with placebo (57% vs 45%: p < 0.05). This toxicity was significant for both upper gastrointestinal side effects such as esophagitis, mucositis, and nausea as well as diarrhea (CitationPowles et al 2002). In the pooled analysis of oral ibandronate, patients receiving ibandronate were twice as likely to experience gastrointestinal side effects as those receiving placebo (14.6% vs 7.6%) (Body et al 2004b). It appears that oral ibandronate may cause less gastrointestinal toxicity than clodronate, although no direct comparison has been made.

Clinically significant rises in serum creatinine are rare among patients treated with i.v. bisphosphonates. Both pamidronate and zoledronic acid have been associated with acute and chronic nephrotoxicity (CitationChang et al 2003; CitationSzeto and Chow 2005). Clinical guidelines suggest monitoring of serum creatinine prior to every treatment with either of these drugs, potentially adding to both the cost and time taken to administer treatment (CitationHillner et al 2003). Renal toxicity may not be a class effect with intravenous bisphosphonates. A study examining the safety of intravenous ibandronate administered for up to 4 years found no clinically relevant renal adverse events nor a change in baseline serum creatinine (CitationPecherstorfer et al 2006). Similarly, in patients receiving oral ibandronate for up to 4 years, there were no adverse renal events and serum creatinine remained stable throughout the duration of treatment (CitationMcLachlan et al 2006).

Osteonecrosis of the jaw (ONJ) is a rare but well established adverse event associated with all classes of bisphosphonates. Patients treated with high potency bisphosphonates or over a long period of time are believed to be at greater risk of developing ONJ (CitationBamias et al 2005) and current practice guidelines suggest dental examination and tooth extraction prior to commencement of bisphosphonate therapy. Patients should also avoid elective dental surgery once potent bisphosphonates are commenced (CitationHillner et al 2003). An Australian study has recently estimated the frequency of bisphosphonate associated ONJ. In patients with metastatic cancer to bone they found a relative frequency of ONJ of 1 in 87–114 (0.88%–1.14%), this increased dramatically if extractions were performed to 1 in 11–15 (6.67%–9.1%). The median time to ONJ in all patients was 12 months for zoledronic acid, 24 months for pamidronate, and 24 months for alendronate (CitationMavrokokki et al 2007). The International Myeloma Foundation collected similar data in the United States from 1203 respondents: 904 had myeloma and 299 breast cancer. With censoring of data at 36 months they found ONJ developed in 10% of 211 patients receiving zoledronic acid, compared with 4% of 413 patients receiving pamidronate (p = 0.002 by the log-rank test) (CitationDurie and Crowley 2005). Due to the design of these studies both may overestimate the incidence of ONJ; however, it is a side-effect that both patient and clinician need to be mindful of. Oral bisphosphonates are associated with a decreased risk of ONJ compared with intravenous preparations. A study using oral surgery as a surrogate marker for ONJ found no association between oral bisphosphonate use and jaw surgery (CitationPazianas et al 2007). Case reports of ONJ associated with oral bisphosphonates, including ibandronate, are emerging (CitationMalden and Pai 2007).

Cost effectiveness

In removing the need for hospital attendance and regular safety monitoring, oral bisphosphonates may be more cost effective than intravenous administration (saving time for nurses and patients and reducing the use of hospital resources) (CitationNavarro et al 2002). The cost-effectiveness of oral ibandronate compared with other intravenous bisphosphonates in the UK healthcare setting has recently been reported (CitationDe Cock et al 2005). This analysis found oral ibandronate to be more cost effective treatment than intravenous zoledronic acid or intravenous pamidronate in patients with metastatic breast cancer.

Conclusion

Clodronate, ibandronate, pamidronate, and zoledronic acid are all effective in reducing SREs and improving quality of life in patients with metastatic breast cancer. This class of drugs has been adopted as the standard of care for patients with bone metastasis from breast cancer (CitationHillner et al 2003). No bisphosphonate has an impact on survival. Consequently, efficacy, both in reducing SREs and palliating pain, ease of administration, and the side effect profile are important considerations in bisphosphonate choice. Ibandronate is a potent bisphosphonate, with similar efficacy to zoledronic acid in reducing markers of bone resorption and has the benefit of both oral and intravenous routes of administration. Its safety profile is superior to that of both pamidronate and zoledronic acid, with minimal renal toxicity and less acute phase reactions. Unlike pamidronate, ibandronate effectively palliates pain from bone metastasis for as long as 2 years and thus has a durable impact on patient’s quality of life. New developments examining ibandronate’s role as a second-line bisphosphonate or at high doses to palliate opioid-resistant pain need further evaluation in clinical trials.

References

  • AliSMEstevaFJHortobagyiGSafety and efficacy of bisphosphonates beyond 24 months in cancer patientsJ Clin Oncol2001193434711454892
  • AtulaSPowlesTPatersonAExtended safety profile of oral clodronate after long-term use in primary breast cancer patientsDrug Saf2003266617112814333
  • BamiasAKastritisEBamiaCOsteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factorsJ Clin Oncol2005238580716314620
  • BanerjeeDAsifAStrikerLShort-term, high-dose pamidronate-induced acute tubular necrosis: the postulated mechanisms of bisphosphonate nephrotoxicityAm J Kidney Dis200341E1812778436
  • BergstromBLichinitserMBodyJJIntravenous and oral ibandronate have better safety and tolerability profiles than zoledronic acid: evidence from comparative phase II/III trialsBone200638Suppl 1S68
  • BodyJJDielIJBellROral ibandronate improves bone pain and preserves quality of life in patients with skeletal metastases due to breast cancerPain20041113061215363874
  • BodyJJDielIJLichinitserMRIntravenous ibandronate reduces the incidence of skeletal complications in patients with breast cancer and bone metastasesAnn Oncol2003a14139940512954579
  • BodyJJDielIJLichinitzerMOral ibandronate reduces the risk of skeletal complications in breast cancer patients with metastatic bone disease: results from two randomised, placebo-controlled phase III studiesBr J Cancer2004901133715026791
  • BodyJJKanisJDielIRisk reductions in metastatic breast cancer: mulitvariate Poisson regression analyes of oral and i.v. ibandroanteAm Soc Clin Oncol2003b2246
  • BodyJJLichinisterMTjulandinSOral ibandronate and intravenous zoledronic acid in metastatic breast cancer patients: comparative bone turnover marker and safety dataBone200638Suppl 1S69
  • BodyJJLichinitserMTjulandinSOral ibandronate is as active as intravenous zoledronic acid for reducing bone turnover markers in women with breast cancer and bone metastasesAnn Oncol20071811657117442659
  • BodyJJLouviauxIDumonJCDecreased efficacy of bisphosphonates for recurrences of tumor-induced hypercalcemiaSupport Care Cancer2000839840410975689
  • ChangJTGreenLBeitzJRenal failure with the use of zoledronic acidN Engl J Med200334916769 discussion 1676–914573746
  • ClemonsMDranitsarisGOoiWA phase II trial evaluating the palliative benefit of second-line oral ibandronate in breast cancer patients with either a skeletal related event (SRE) or progressive bone metastases (BM) despite standard bisphosphonate (BP) therapyBreast Cancer Res Treat2008108798517473981
  • ColemanREMetastatic bone disease: clinical features, pathophysiology and treatment strategiesCancer Treat Rev2001271657611417967
  • DaubineFLe GallCGasserJAntitumor effects of clinical dosing regimens of bisphosphonates in experimental breast cancer bone metastasisJ Natl Cancer Inst2007993223017312309
  • De CockEHuttonJCanneyPCost-effectiveness of oral ibandronate compared with intravenous (i.v.) zoledronic acid or i.v. generic pamidronate in breast cancer patients with metastatic bone disease undergoing i.v. chemotherapySupport Care Cancer2005139758615871033
  • DielIJBodyJJLichinitserMRImproved quality of life after long-term treatment with the bisphosphonate ibandronate in patients with metastatic bone disease due to breast cancerEur J Cancer20044017041215251160
  • DielIJSolomayerEFBastertGTreatment of metastatic bone disease in breast cancer: bisphosphonatesClin Breast Cancer20001435111899389
  • DurieBGKatzMCrowleyJOsteonecrosis of the jaw and bisphosphonatesN Engl J Med20053539910216000365
  • GranoMMoriGMinielliVBreast cancer cell line MDA-231 stimulates osteoclastogenesis and bone resorption in human osteoclastsBiochem Biophys Res Commun2000270109710010772956
  • HillnerBEIngleJNChlebowskiRTAmerican Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancerJ Clin Oncol20032140425712963702
  • HiragaTWilliamsPJMundyGRThe bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastasesCancer Res20016144182411389070
  • HortobagyiGNTheriaultRLLiptonALong-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study GroupJ Clin Oncol1998162038449626201
  • HultbornRGundersenSRydenSEfficacy of pamidronate in breast cancer with bone metastases: a randomized, double-blind placebo-controlled multicenter studyAnticancer Res19991933839210629624
  • LiptonABone metastases in breast cancerCurr Treat Options Oncol20034151812594941
  • LiuGFranssenEFitchMIPatient preferences for oral versus intravenous palliative chemotherapyJ Clin Oncol19971511058996131
  • LuckmanSPHughesDECoxonFPNitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including RasJ Bone Miner Res19981358199556058
  • MajorPPLiptonABerensonJOral bisphosphonates: A review of clinical use in patients with bone metastasesCancer20008861410618600
  • MaldenNJPaiAYOral bisphosphonate associated osteonecrosis of the jaws: three case reportsBr Dent J200720393717660780
  • ManciniIDumonJCBodyJJEfficacy and safety of ibandronate in the treatment of opioid-resistant bone pain associated with metastatic bone disease: a pilot studyJ Clin Oncol20042235879215337809
  • MavrokokkiTChengASteinBNature and frequency of bisphosphonate-associated osteonecrosis of the jaws in AustraliaJ Oral Maxillofac Surg2007654152317307586
  • McLachlanSACameronDMurrayRSafety of oral ibandronate in the treatment of bone metastases from breast cancer: long-term follow-up experienceClin Drug Investig200626438
  • MichigamiTHiragaTWilliamsPJThe effect of the bisphosphonate ibandronate on breast cancer metastasis to visceral organsBreast Cancer Res Treat2002752495812353814
  • MonkkonenHAuriolaSLehenkariPA new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonatesBr J Pharmacol20061474374516402039
  • NavarroRPMorrowTBaranRPharmacoeconomic and clinical outcomes in oncology using oral chemotherapyManag Care Interface200215556212143298
  • NobuyukiHHiragaTWilliamsPJThe bisphosphonate zoledronic acid inhibits metastases to bone and liver with suppression of osteopontin production in mouse mammary tumorJ Bone Miner Res200116Suppl 1S191
  • NovartisPharmaAredia (pamidronate) Prescribing information
  • NovartisPharmaZometa (zoledronic acid) Prescribing Information
  • OliffAFarnesyltransferase inhibitors: targeting the molecular basis of cancerBiochim Biophys Acta19991423C193010382537
  • PaleyMLoveNCarlsonRPreferences for oral and parenteral antitumor therapy: a survey of 260 patients with metastatic breast cancerProc Am Soc Clin Oncol200523619
  • PatersonAHPowlesTJKanisJADouble-blind controlled trial of oral clodronate in patients with bone metastases from breast cancerJ Clin Oncol19931159658418243
  • PavlakisNStocklerMBisphosphonates for breast cancerCochrane Database Syst Rev20021CD00347411869664
  • PazianasMBlumentalsWAMillerPDLack of association between oral bisphosphonates and osteonecrosis using jaw surgery as a surrogate markerOsteoporos Int2007Nov 13 Epub ahead of print
  • PecherstorferMRivkinSBodyJJLong-term safety of intravenous ibandronic acid for up to 4 years in metastatic breast cancer: an open-label trialClin Drug Investig20062631522
  • PfeilschifterJMundyGRModulation of type beta transforming growth factor activity in bone cultures by osteotropic hormonesProc Natl Acad Sci USA198784202483494250
  • PowlesTPatersonSKanisJARandomized, placebo-controlled trial of clodronate in patients with primary operable breast cancerJ Clin Oncol20022032192412149294
  • RosenLSGordonDKaminskiMZoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trialCancer J200173778711693896
  • RussellRGCroucherPIRogersMJBisphosphonates: pharmacology, mechanisms of action and clinical usesOsteoporos Int19999Suppl 2S668010525729
  • RussellRGRogersMJFrithJCThe pharmacology of bisphosphonates and new insights into their mechanisms of actionJ Bone Miner Res199914Suppl 2536510510215
  • SzetoCCChowKMNephrotoxicity related to new therapeutic compoundsRen Fail2005273293315957551
  • TripathyDLichinitzerMLazarevAOral ibandronate for the treatment of metastatic bone disease in breast cancer: efficacy and safety results from a randomized, double-blind, placebo-controlled trialAnn Oncol2004157435015111341
  • ZhangFLCaseyPJProtein prenylation: molecular mechanisms and functional consequencesAnnu Rev Biochem199665241698811180