172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genome-Wide Screening Identifies DNA Methylation Sites that Regulate the Blood Proteome

ORCID Icon, ORCID Icon & ORCID Icon
Pages 837-848 | Received 09 Apr 2022, Accepted 01 Jul 2022, Published online: 19 Jul 2022
 

Abstract

Background: Identifying DNA methylation sites that regulate the blood proteome is important for biomedical purposes. Materials & methods: Here the authors performed a genome-wide search to find DNA methylation sites that impact proteins. Results: The authors identified 165 methylation sites associated with 138 proteins. The authors noted hotspot genomic regions that control the levels of several proteins. For example, methylation of the ABO locus impacted 37 proteins and contributed to cardiometabolic comorbidities, including the severity of SARS-CoV-2 infection. The authors made these findings publicly available as a Unix software that identifies methylation sites that cause disease and reveals the underlying proteins. The authors underlined the software application by showing that components of innate immunity contribute to systolic blood pressure. Conclusion: This study provides a catalog of DNA methylation sites that regulate the proteome, and the results are available as freeware for biological insight.

Plain language summary

Our lifestyle choices and interactions with the world around us are continuously printed in our DNA through a biochemical process known as epigenomic modification. Excessive epigenomic modification at a DNA site may cause disease. To prevent or treat disease, it is important to find such sites and remove the excessive epigenomic modification with medications or lifestyle changes. Here the authors searched for DNA sites that undergo epigenomic modification. The authors also investigated the mechanism whereby these sites cause disease. The authors found that there are DNA sites where reverting the epigenomic modification could have a big impact on the body. The authors have made these findings publicly available.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at: www.tandfonline.com/doi/suppl/10.2217/epi-2022-0119

Acknowledgments

This study was enabled in part by computational resources and support provided by Compute Ontario and Compute Canada.

Financial & competing interests disclosure

R McPherson was supported by the Canadian Institutes of Health Research (FDN-154308). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Data availability statement

Data, instructions and shell scripts to carry out the analyses are available from https://github.com/mnikpay/epiproteome-to-phenome.git.

Additional information

Funding

R McPherson was supported by the Canadian Institutes of Health Research (FDN-154308). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 130.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.