74
Views
0
CrossRef citations to date
0
Altmetric
Review

Cancer Cells‘ Epigenetic Composition And Predisposition to Histone Deacetylase Inhibitor Sensitization

&
Pages 145-155 | Published online: 20 Apr 2011
 

Abstract

Normal cells are up to ten times more resistant to histone deacetylase inhibitors (HDACis)-induced cell death compared with transformed cells. The molecular processes underlying this selectivity for cancer cells are still not well understood. Although a differential response to oxidative stress and capacity to repair damaged DNA have been described in some systems, these cannot fully account for the sensitivity of cancer cells to HDACis since the heterogeneity of cancer cells prompts differential sensitivities to reactive oxygen species and generates a panoply of defective DNA repair mechanisms within given histologies, cancer cell lines and tumor xenografts. It seems also unlikely that the influence of HDACis on cancer treatments reside primarily on gene transcription, since gene-expression profiling aimed at defining correlation with response to HDACis in cancer cells indicates that less than 5% to approximately 20% of transcribed genes are altered by HDACis treatment. Moreover, the altered genes vary from cell line to cell line and between different HDACis. Therefore, no consistent picture of a target(s) or pathway(s) modulated by HDACis has emerged. One consistent parameter that has however been observed in peripheral blood mononuclear cells of patients treated with HDACi is the accumulation of acetylated histones. Because one of the primary functions of histone acetylation is to increase chromatin accessibility, this article will explore the possibility that intrinsic molecular and structural characteristics of cancer cells provide a selective advantage for HDACis sensitivity.

Financial & competing interests disclosure

The authors receieved financial support from NIH/NCI, RO1 1CA116491–01 (FC). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Additional information

Funding

The authors receieved financial support from NIH/NCI, RO1 1CA116491–01 (FC). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 130.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.