189
Views
1
CrossRef citations to date
0
Altmetric
Perspective

The role of immune subtyping in glioma mRNA vaccine development

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1057-1072 | Received 03 Feb 2023, Accepted 20 Jun 2023, Published online: 11 Jul 2023
 

Abstract

Studies on the development of mRNA vaccines for central nervous system tumors have used gene expression profiles, clinical data and RNA sequencing from sources such as The Cancer Genome Atlas and Chinese Glioma Genome Atlas to identify effective antigens. These studies revealed several immune subtypes of glioma, each one linked to unique prognoses and genetic/immune-modulatory changes. Potential antigens include ARPC1B, BRCA2, COL6A1, ITGB3, IDH1, LILRB2, TP53 and KDR, among others. Patients with immune-active and immune-suppressive phenotypes were found to respond better to mRNA vaccines. While these findings indicate the potential of mRNA vaccines in cancer therapy, further research is required to optimize administration and adjuvant selection, and precisely identify target antigens.

Plain language summary

Scientists study special vaccines for hard-to-treat brain tumors. They looked at things, such as information about patients and the small parts of cells that make up the tumor, to find ways to help. They found that brain tumors can make our body’s defenses act differently. They also found some possible targets and unique defense patterns that are special to each patient when fighting these tumors. Patients with these special defenses and good targets might respond better to treatment with vaccines. This is exciting because it means that in the future, we might have treatments made for each person. But we still need to do more research to figure out how to get these vaccines to the tumor, so this research gives us hope that we can find better treatments and more choices for people with brain cancer. If we keep researching, we might find even better treatments in the future.

Tweetable abstract

Personalized mRNA vaccines show potential for treating gliomas, with gene profiling and clinical data revealing immune subtypes linked to treatment response. Further research is needed to optimize delivery and target selection. #mRNAVaccines #CNSCancer

Author contributions

A Guterres was responsible for study conception and design. A Guterres, M Abrahim and PCC Neves were responsible for data collection and analysis. A Guterres, M Abrahim and PCC Neves were responsible for interpretation of data. All authors reviewed and contributed to revisions of the manuscript.

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 216.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.