1,147
Views
3
CrossRef citations to date
0
Altmetric
Review

Properties, Engineering and Applications of Lipid-Based Nanoparticle Drug-Delivery Systems: Current Research and Advances

&
Pages 1237-1260 | Published online: 01 Nov 2010
 

Abstract

Lipid-based drug-delivery systems have evolved from micro- to nano-scale, enhancing the efficacy and therapeutic applications of these delivery systems. Production of lipid-based pharmaceutical nanoparticles is categorized into top-down (fragmentation of particulate material to reduce its average total dimensions) and bottom-up (amalgamation of molecules through chemical interactions creating particles of greater size) production methods. Selection of the appropriate method depends on the physiochemical properties of individual entities within the nanoparticles. The production method also influences the type of nanoparticle formulations being produced. Liposomal formulations and solid-core micelles are the most widely utilized lipid-based nanoparticles, with surface modifications improving their therapeutic outcomes through the production of long-circulating, tissue-targeted and/or pH-sensitive nanoparticles. More recently, solid lipid nanoparticles have been engineered to reduce toxicity toward mammalian cells, while multifunctional lipid-based nanoparticles (i.e., hybrid lipid nanoparticles) have been formulated to simultaneously perform therapeutic and diagnostic functions. This article will discuss novel lipid-based drug-delivery systems, outlining the properties and applications of lipid-based nanoparticles alongside their methods of production. In addition, a comparison between generations of the lipid-based nano-formulations is examined, providing insight into the current directions of lipid-based nanoparticle drug-delivery systems.

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Acknowledgement

The authors would like to thank Ildiko Badea, College of Pharmacy and Nutrition, University of Saskatchewan, for her help reading the paper and for her suggestions to rearrange some sections of the manuscript.

Additional information

Funding

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 236.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.