1,106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Curcumin-Encapsulated MePEG/PCL Diblock Copolymeric Micelles: A Novel Controlled Delivery Vehicle for Cancer Therapy

Pages 433-449 | Published online: 16 Apr 2010
 

Abstract

Aim: To develop a suitable formulation of curcumin-encapsulated methoxy poly(ethylene glycol) (MePEG)/poly-ε-caprolactone (PCL) diblock copolymeric micelle by varying the copolymer ratio, for achieving small sized micelles with high encapsulation of curcumin. To evaluate the micelle‘s aqueous solubility and stability, efficiency of cellular uptake, cell cytotoxicity and ability to induce apoptosis on pancreatic cell lines. Method: Amphiphilic diblock copolymers (composed of MePEG and PCL) were used in various ratios for the preparation of curcumin-encapsulated micelles using a modified dialysis method. Physicochemical characterization of the formulation included size and surface charge measurement, transmission electron microscopy characterization, spectroscopic analysis, stability and in vitro release kinetics studies. The anticancer efficacy of the curcumin-encapsulated micelle formulation was compared with unmodified curcumin in terms of cellular uptake, cell cytotoxicity and apoptosis of pancreatic cell lines MIA PaCa-2 and PANC-1. Results: Physiochemical characterization of the formulations revealed that curcumin was efficiently encapsulated in all formulation of MePEG/PCL micelles; however, a 40:60 MePEG:PCL ratio micelle was chosen for experimental studies owing to its high encapsulation (∼60%) with size (∼110 nm) and negative ζ potential (∼-16 mV). Curcumin-encapsulated micelles increased the bioavailability of curcumin due to enhanced uptake (2.95 times more compared with unmodified) with comparative cytotoxic activity (by induction of apoptosis) compared with unmodified curcumin at equimolar concentrations. IC50 values for unmodified curcumin and curcumin micelles were found to be 24.75 µM and 22.8 µM for PANC-1 and 14.96 µM and 13.85 µM for MIA PaCa-2, respectively. Together the results clearly indicate the promise of a micellar system for efficient solubilization, stabilization and controlled delivery of the hydrophobic drug curcumin for cancer therapy.

View correction statement:
Erratum

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Ethical conduct of research

The authors state that they have obtained appropriate institutional review board approval or have followed the principles outlined in the Declaration of Helsinki for all human or animal experimental investigations. In addition, for investigations involving human subjects, informed consent has been obtained from the participants involved.

Additional information

Funding

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 236.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.