256
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced Osteogenic Differentiation with 3D Electrospun Nanofibrous Scaffolds

, , &
Pages 1561-1575 | Received 17 Nov 2011, Accepted 21 Feb 2012, Published online: 13 Nov 2012
 

Abstract

Aim: Developing 3D scaffolds mimicking the nanoscale structure of the native extracellular matrix is important in tissue regeneration. In this study, we aimed to demonstrate the novelty of 3D nanofibrous scaffolds and compare their efficiency with 2D nanofibrous scaffolds. Materials & methods: The 2D poly(L-lactic acid)/collagen nanofibrous scaffolds were 2D meshes fabricated by the conventional electrospinning technique, whereas the 3D poly(L-lactic acid)/collagen nanofibrous scaffolds were fabricated by a modified electrospinning technique using a dynamic liquid support system. The morphology, proliferation and differentiation abilities of human mesenchymal stem cells in osteogenic medium on both scaffolds were investigated. Results & conclusion: Compared with the 2D scaffolds, the 3D scaffolds significantly increased the expression of osteoblastic genes of the stem cells as well as the formation of bone minerals. In addition, the scanning electron microscopic and micro-computed tomographic images showed the dense deposition of bone minerals aligned along the nanofibers of the 3D scaffolds after 14 and 28 days cultured with the mesenchymal stem cells. As such, the 3D electrospun poly(L-lactic acid)/collagen nanofibrous scaffold is a novel bone graft substitute for bone tissue regeneration.

Original submitted 17 November 2011; Revised submitted 21 February 2012; Published online 18 June 2012

Financial & competing interests disclosure

The authors would like to thank National Medical Research Council (NMRC/1151/2008), Singapore, for financial support. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Ethical conduct of research

The authors state that they have obtained appropriate institutional review board approval or have followed the principles outlined in the Declaration of Helsinki for all human or animal experimental investigations. In addition, for investigations involving human subjects, informed consent has been obtained from the participants involved.

Acknowledgements

The authors give many thanks to TW Eong for valuable discussions and VT Nghia at Singapore Synchrotron Light Source for helping us perform micro-computed tomography.

Additional information

Funding

The authors would like to thank National Medical Research Council (NMRC/1151/2008), Singapore, for financial support. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 236.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.