311
Views
2
CrossRef citations to date
0
Altmetric
Review

Nanotechnology to Drive Stem Cell Commitment

, , , , , , , , , & show all
Pages 469-486 | Published online: 11 Mar 2013
 

Abstract

Stem cells (SCs) are undifferentiated cells responsible for the growth, homeostasis and repair of many tissues. The maintenance and survival of SCs is strongly influenced by several stimuli from the local microenvironment. The majority of signaling molecules interact with SCs at the nanoscale level. Therefore, scaffolds with surface nanostructures have potential applications for SCs and in the field of regenerative medicine. Although some strategies have already reached the field of cell biology, strategies based on modification at nanoscale level are new players in the fields of SCs and tissue regeneration. The introduction of the possibility to perform such modifications to these fields is probably due to increasing improvements in nanomaterials for biomedical applications, as well as new insights into SC biology. The aim of the present review is to exhibit the most recent applications of nanostructured materials that drive the commitment of adult SCs for potential clinical applications.

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Additional information

Funding

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 236.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.