389
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Influence of the curing mode on the degree of conversion of a dual-cured self-adhesive resin luting cement beneath ceramic

, , , , , & show all
Pages 444-448 | Received 12 Jan 2012, Accepted 08 Mar 2012, Published online: 28 May 2012
 

Abstract

Objective. To evaluate the effect of the delayed photoactivation and ceramic barrier on the degree of conversion (DC) of self-adhesive resin cement. Materials and methods. Circular specimens (5 mm in diameter × 1 mm in thickness) of the RelyX U-100 resin cement were made using the following curing protocols (n = 10): (G1) 40 s beneath a IPS Empress II ceramic; (G2) 40 s of direct photocuring; (G3) 80 s beneath the ceramic; (G4) 80 s of direct photocuring; (G5) self-curing; (G6) 5 min in the absence of light (self-curing) followed by transceramic photocuring for 40 s; (G7) 5 min in the absence of light (self-curing) followed by transceramic photocuring for 80 s. All the specimens were photoactivated by LED (800 mW/cm2). After 24 h of dry storage, the DC was measured by FTIR, on the top surface of the specimens. Data were submitted to one-way ANOVA and Tukey test (p ≤ 0.05). Results. Direct photocuring with no ceramic interposition, regardless of the curing time (40 s and 80 s) promoted the highest conversion mean (56.79 ± 1.19 and 59.98 ± 2.93, respectively) and the 5 min delay time for the transceramic photocuring presented a similar mean compared to the immediate transceramic photocuring. The DC was influenced by the ceramic barrier, decreasing the conversion values (49.72 ± 1.91 for 40 s and 52.36 ± 2.50 for 80 s), with no statistical difference from the groups with the previous 5 min of photoactivation delay. The self-cure only showed the worst DC values. Conclusion. Direct photocuring provided a higher degree of conversion for the self-adhesive resin cement. The delayed light activation did not influence the degree of conversion for the resin cement tested.

Acknowledgments

This study was supported by FAPESP (#2010/19483-3).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.