244
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Change of Nrf2 expression in rat hippocampus in a model of chronic cerebral hypoperfusion

, , &
Pages 577-584 | Received 21 Apr 2013, Accepted 03 Nov 2013, Published online: 04 Dec 2013
 

Abstract

Chronic cerebral hypoperfusion (CCH) is common in vascular dementia and Alzheimer's disease. CCH-related oxidative damage plays a significant role in the development of cognitive impairment. Nuclear factor-erythroid 2-related factor-2 (Nrf2) mediates activation of the antioxidant responsive element (ARE)-related gene expression, which is crucial to the endogenous antioxidative system. In this case, we used permanent bilateral occlusion of common carotid arteries (2VO) to mimic CCH. The expression of Nrf2 in different regions of the hippocampus as well as the ability of nuclear Nrf2 and ARE binding have been examined. A phenomenon has been observed that the DNA binding activities were down-regulated. Interestingly, the expression of Nrf2 rose significantly in most regions of rat hippocampus within three weeks after the 2VO surgery. The mismatch might attribute to Nrf2 dysfunction and compensatory synthesis. A conclusion can be drawn that Nrf2 dysfunction is an important factor as a cause of CCH-induced oxidative damage and Nrf2 can be treated as a promising target to alleviate oxidative damage, even cognitive impairment caused by CCH.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,997.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.