165
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Lipopolysaccharide preconditioning attenuates apoptotic processes and improves neuropathologic changes after spinal cord injury in rats

, , , , , & show all
Pages 585-592 | Received 15 Jul 2013, Accepted 06 Nov 2013, Published online: 12 Dec 2013
 

Abstract

We have shown earlier that administration of low-dose lipopolysaccharide (LPS) significantly contributed to recovery of motor function after traumatic spinal cord injury in the adult female rat. Using the same standardized animal model, we have now designed a set of experiments to test the hypothesis that LPS preconditioning attenuates stress-related apoptotic processes early after spinal cord trauma. The lower thoracic spinal cord injury in adult female Sprague-Dawley rats was caused by a 10 g weight rod drop from 25 mm on the dural surface of the exposed spinal cord at T10. The rats were randomly assigned to three groups: Sham injury, control (received normal saline alone), and LPS preconditioning (0.2 mg/kg, ip; 72 h prior to the injury). The animals were euthanized at 72 h postinjury. Neuropathologic changes were assessed using hematoxylin and eosin staining. SCI-induced apoptosis were observed by transmission electron microscopy. Caspase-3, cleaved caspase-3, Bax, and Bcl-2 were examined with immunohistochemistry or Western blotting. Compared with the control group, LPS preconditioning group showed significant improvement in the SCI-induced morphology changes. Furthermore, LPS preconditioning reduced the expressions of apoptotic markers caspase-3, cleaved caspase-3, and Bax, upregulated the expression of antiapoptotic marker Bcl-2 in the samples of spinal cord. Low-dose LPS attenuated the recruitment of inflammatory cells and the proliferation of glial cells in the site of injury. LPS preconditioning has neuroprotective effects against TSCI in rats due to its antiapoptosis properties as shown by the inhibition of caspase pathway and the upregulation of antiapoptotic protein.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,997.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.