228
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A morphology-based method for the diagnosis of red blood cells parasitized by Plasmodium malariae and Plasmodium ovale

, , &
Pages 368-375 | Received 07 Oct 2013, Accepted 24 Dec 2013, Published online: 25 Feb 2014
 

Abstract

Background: The morphology of red blood cells (RBCs) is altered significantly during the maturation stages of malaria parasites, which include ring, trophozoite, and schizont. There is dissimilarity in terms of the morphological characteristics of parasitized RBCs infected by the 4 species of Plasmodium, including falciparum, vivax, malariae, and ovale. This makes the process of diagnosis very difficult, which may lead to a wrong treatment method and substantial damage to the health of the patient. An innovative technique in introduced that accurately defines the shape of parasitized RBCs at each stage of infection as a potential method of diagnosis. Methods: Giemsa-stained thin blood films were prepared using blood samples collected from healthy donors as well as patients infected with P. malariae and P. ovale. The diameter and thickness of healthy and infected RBCs at each stage of infection were measured from their optical images using Olysia and Scanning Probe Image Processor (SPIP) software, respectively. A shape equation was fitted based on the morphological characteristics of RBCs, and their relative 2-dimensional shapes were plotted using Wolfram Mathematica. Results: At the ring stage, the thicknesses of RBCs parasitized by P. malariae (Pm-RBCs) and P. ovale (Po-RBCs) increased by 42% and 51%, respectively. Both Pm-RBCs and Po-RBCs remained nearly biconcave throughout parasite development even though their volumes increased. Conclusions: It is proposed that the morphology-based characterization technique introduced here could be used to intensify the accuracy of the Giemsa staining diagnosis method for the detection of the Plasmodium genus and infection stage. Based on the significant morphological alterations induced by different Plasmodium species, the results may also find practical use for faster prediction and treatment of human malaria.

Acknowledgements

This work was supported by the Iran University of Science and Technology and National Institute of Genetic Engineering and Biotechnology. We gratefully acknowledge the participants for their cooperation and blood sample donation. We also thank the staff of the Mycology Department and Parasitology Laboratory of Tehran University of Medical Sciences for their collaboration.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.